2014, 11(1): 139-148. doi: 10.3934/mbe.2014.11.139

Structural phase transitions in neural networks

1. 

Mathematical Center, University of Lund, Box 118, Lund S-221 00, Sweden

Received  January 2013 Revised  June 2013 Published  September 2013

A model is considered for a neural network that is a stochastic process on a random graph. The neurons are represented by ``integrate-and-fire" processes. The structure of the graph is determined by the probabilities of the connections, and it depends on the activity in the network. The dependence between the initial level of sparseness of the connections and the dynamics of activation in the network was investigated. A balanced regime was found between activity, i.e., the level of excitation in the network, and inhibition, that allows formation of synfire chains.
Citation: Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139
References:
[1]

M. Abeles, "Local Cortical Circuits: An Electrophysiological Study,", Studies of Brain Function, (1982). Google Scholar

[2]

M. Abeles, "Corticonics: Neural Circuits of the Cerebral Cortex,", First edition, (1991). Google Scholar

[3]

I. Ayzenshtat, E. Meirovithz, H. Edelman, U. Werner-Reiss, E. Bienenstock, M. Abeles and H. Slovin, Precise spatiotemporal patterns among visual cortical areas and their relation to visual stimulus processing., J. Neurosci., 30 (2010), 11232. Google Scholar

[4]

E. Bienenstock, A model of neocortex,, Network, 6 (1995), 179. Google Scholar

[5]

J.-P. Eckmann, E. Moses, O. Stetter, T. Tlusty and C. Zbinden, Leaders of neuronal cultures in a quorum percolation model,, Front. Comput. Neurosci., 4 (2010). Google Scholar

[6]

I. R. Fiete, W. Senn, C. Z. H. Wang and R. H. R. Hahnloser, Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity,, Neuron., 65 (2010), 563. doi: 10.1016/j.neuron.2010.02.003. Google Scholar

[7]

W. J. Freeman, "Mass Action in the Nervous System: Examination of the Neurophysiological Basis of Adaptive Behavior through the EEG,", Academic Press, (1975). Google Scholar

[8]

T. E. Harris, "The Theory of Branching Processes,", Die Grundlehren der Mathematischen Wissenschaften, (1963). Google Scholar

[9]

R. H. Hahnloser, A. A. Kozhevnikov and M. S. Fee, An ultra-sparse code underlies the generation of neural sequences in a songbird,, Nature, 419 (2002), 65. Google Scholar

[10]

J. Hertz and A. Prgel-Bennet, Learning synfire-chains by self-organization,, Network, 7 (1996), 357. Google Scholar

[11]

J. Iglesias and A. E. Villa, Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development,, Int. J. Neural Syst., 18 (2008), 267. Google Scholar

[12]

J. Iglesias and A. E. Villa, Effect of stimulus-driven pruning on the detection of spatiotemporal patterns of activity in large neural networks,, Biosystems, 89 (2007), 287. Google Scholar

[13]

S. Janson, T. Luczak, T. Turova and T. Vallier, Bootstrap percolation on the random graph $G_{n,p}$,, Annals of Applied Probability, 22 (2012), 1989. doi: 10.1214/11-AAP822. Google Scholar

[14]

R. Kozma, M. Puljic, P. Balister, B. Bollobás and W. Freeman, Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions,, Biol. Cybernet., 92 (2005), 367. doi: 10.1007/s00422-005-0565-z. Google Scholar

[15]

S. Kunkel, M. Diesmann and A. Morrison, Limits to the development of feed-forward structures in large recurrent neuronal networks,, Frontiers in Computational Neuroscience, 4 (2011). doi: 10.3389/fncom.2010.00160. Google Scholar

[16]

R. Mooney and J. F. Prather, The HVC microcircuit: The synaptic basis for interactions between song motor and vocal plasticity pathways,, J. Neurosci., 25 (2005), 1952. Google Scholar

[17]

G. Mongillo, O. Barak and M. Tsodyks, Synaptic theory of working memory,, Science, 319 (2008), 1543. Google Scholar

[18]

J. Montgomery and D. Madison, Discrete synaptic states define a major mechanism of synapse plasticity,, Trends in Neurosciences, 27 (2004), 744. Google Scholar

[19]

Y. Prut, E. Vaadia, H. Bergman, I. Haalman, S. Hamutal and M. Abeles, Spatiotemporal structure of cortical activity: Properties and behavioral relevance,, J. Neurophysiol., 79 (1998), 2857. Google Scholar

[20]

M. Puljic and R. Kozma, Activation clustering in neural and social networks,, Complexity, 10 (2005), 42. doi: 10.1002/cplx.20075. Google Scholar

[21]

E. T. Rolls and A. Treves, The neuronal encoding of information in the brain,, Progress in Neurobiology, 95 (2011), 448. Google Scholar

[22]

E. T. Rolls, "Memory, Attention, and Decision-Making. A Unifying Computational Neuroscience Approach,", Oxford University Press, (2008). Google Scholar

[23]

C. Trengove, C. van Leeuwen and M. Diesmann, High-capacity embedding of synfire chains in a cortical network model,, J. Comput. Neurosci., 34 (2012), 185. doi: 10.1007/s10827-012-0413-9. Google Scholar

[24]

T. S. Turova, The emergence of connectivity in neuronal networks: From bootstrap percolation to auto-associative memory,, Brain Research, 1434 (2012), 277. Google Scholar

[25]

T. Turova and A. Villa, On a phase diagram for random neural networks with embedded spike timing dependent plasticity,, BioSystems, 89 (2007), 280. Google Scholar

[26]

A. E. P. Villa, I. V. Tetko, B. Hyland and A. Najem, Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task,, Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 1106. Google Scholar

[27]

A. Waddington, P. A. Appleby, M. De Kamps and N. Cohen, Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity,, Frontiers in computational Neuroscience, 6 (2012). doi: 10.3389/fncom.2012.00088. Google Scholar

show all references

References:
[1]

M. Abeles, "Local Cortical Circuits: An Electrophysiological Study,", Studies of Brain Function, (1982). Google Scholar

[2]

M. Abeles, "Corticonics: Neural Circuits of the Cerebral Cortex,", First edition, (1991). Google Scholar

[3]

I. Ayzenshtat, E. Meirovithz, H. Edelman, U. Werner-Reiss, E. Bienenstock, M. Abeles and H. Slovin, Precise spatiotemporal patterns among visual cortical areas and their relation to visual stimulus processing., J. Neurosci., 30 (2010), 11232. Google Scholar

[4]

E. Bienenstock, A model of neocortex,, Network, 6 (1995), 179. Google Scholar

[5]

J.-P. Eckmann, E. Moses, O. Stetter, T. Tlusty and C. Zbinden, Leaders of neuronal cultures in a quorum percolation model,, Front. Comput. Neurosci., 4 (2010). Google Scholar

[6]

I. R. Fiete, W. Senn, C. Z. H. Wang and R. H. R. Hahnloser, Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity,, Neuron., 65 (2010), 563. doi: 10.1016/j.neuron.2010.02.003. Google Scholar

[7]

W. J. Freeman, "Mass Action in the Nervous System: Examination of the Neurophysiological Basis of Adaptive Behavior through the EEG,", Academic Press, (1975). Google Scholar

[8]

T. E. Harris, "The Theory of Branching Processes,", Die Grundlehren der Mathematischen Wissenschaften, (1963). Google Scholar

[9]

R. H. Hahnloser, A. A. Kozhevnikov and M. S. Fee, An ultra-sparse code underlies the generation of neural sequences in a songbird,, Nature, 419 (2002), 65. Google Scholar

[10]

J. Hertz and A. Prgel-Bennet, Learning synfire-chains by self-organization,, Network, 7 (1996), 357. Google Scholar

[11]

J. Iglesias and A. E. Villa, Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development,, Int. J. Neural Syst., 18 (2008), 267. Google Scholar

[12]

J. Iglesias and A. E. Villa, Effect of stimulus-driven pruning on the detection of spatiotemporal patterns of activity in large neural networks,, Biosystems, 89 (2007), 287. Google Scholar

[13]

S. Janson, T. Luczak, T. Turova and T. Vallier, Bootstrap percolation on the random graph $G_{n,p}$,, Annals of Applied Probability, 22 (2012), 1989. doi: 10.1214/11-AAP822. Google Scholar

[14]

R. Kozma, M. Puljic, P. Balister, B. Bollobás and W. Freeman, Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions,, Biol. Cybernet., 92 (2005), 367. doi: 10.1007/s00422-005-0565-z. Google Scholar

[15]

S. Kunkel, M. Diesmann and A. Morrison, Limits to the development of feed-forward structures in large recurrent neuronal networks,, Frontiers in Computational Neuroscience, 4 (2011). doi: 10.3389/fncom.2010.00160. Google Scholar

[16]

R. Mooney and J. F. Prather, The HVC microcircuit: The synaptic basis for interactions between song motor and vocal plasticity pathways,, J. Neurosci., 25 (2005), 1952. Google Scholar

[17]

G. Mongillo, O. Barak and M. Tsodyks, Synaptic theory of working memory,, Science, 319 (2008), 1543. Google Scholar

[18]

J. Montgomery and D. Madison, Discrete synaptic states define a major mechanism of synapse plasticity,, Trends in Neurosciences, 27 (2004), 744. Google Scholar

[19]

Y. Prut, E. Vaadia, H. Bergman, I. Haalman, S. Hamutal and M. Abeles, Spatiotemporal structure of cortical activity: Properties and behavioral relevance,, J. Neurophysiol., 79 (1998), 2857. Google Scholar

[20]

M. Puljic and R. Kozma, Activation clustering in neural and social networks,, Complexity, 10 (2005), 42. doi: 10.1002/cplx.20075. Google Scholar

[21]

E. T. Rolls and A. Treves, The neuronal encoding of information in the brain,, Progress in Neurobiology, 95 (2011), 448. Google Scholar

[22]

E. T. Rolls, "Memory, Attention, and Decision-Making. A Unifying Computational Neuroscience Approach,", Oxford University Press, (2008). Google Scholar

[23]

C. Trengove, C. van Leeuwen and M. Diesmann, High-capacity embedding of synfire chains in a cortical network model,, J. Comput. Neurosci., 34 (2012), 185. doi: 10.1007/s10827-012-0413-9. Google Scholar

[24]

T. S. Turova, The emergence of connectivity in neuronal networks: From bootstrap percolation to auto-associative memory,, Brain Research, 1434 (2012), 277. Google Scholar

[25]

T. Turova and A. Villa, On a phase diagram for random neural networks with embedded spike timing dependent plasticity,, BioSystems, 89 (2007), 280. Google Scholar

[26]

A. E. P. Villa, I. V. Tetko, B. Hyland and A. Najem, Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task,, Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 1106. Google Scholar

[27]

A. Waddington, P. A. Appleby, M. De Kamps and N. Cohen, Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity,, Frontiers in computational Neuroscience, 6 (2012). doi: 10.3389/fncom.2012.00088. Google Scholar

[1]

Timothy J. Lewis. Phase-locking in electrically coupled non-leaky integrate-and-fire neurons. Conference Publications, 2003, 2003 (Special) : 554-562. doi: 10.3934/proc.2003.2003.554

[2]

Benoît Perthame, Delphine Salort. On a voltage-conductance kinetic system for integrate & fire neural networks. Kinetic & Related Models, 2013, 6 (4) : 841-864. doi: 10.3934/krm.2013.6.841

[3]

Michele Barbi, Angelo Di Garbo, Rita Balocchi. Improved integrate-and-fire model for RSA. Mathematical Biosciences & Engineering, 2007, 4 (4) : 609-615. doi: 10.3934/mbe.2007.4.609

[4]

Pierre Guiraud, Etienne Tanré. Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5183-5201. doi: 10.3934/dcdsb.2019056

[5]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences & Engineering, 2016, 13 (3) : 483-493. doi: 10.3934/mbe.2016002

[6]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (1) : 1-10. doi: 10.3934/mbe.2014.11.1

[7]

Christina Knox, Amir Moradifam. Electrical networks with prescribed current and applications to random walks on graphs. Inverse Problems & Imaging, 2019, 13 (2) : 353-375. doi: 10.3934/ipi.2019018

[8]

Roberta Sirovich, Luisa Testa. A new firing paradigm for integrate and fire stochastic neuronal models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 597-611. doi: 10.3934/mbe.2016010

[9]

Stephen Coombes, Helmut Schmidt, Carlo R. Laing, Nils Svanstedt, John A. Wyller. Waves in random neural media. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2951-2970. doi: 10.3934/dcds.2012.32.2951

[10]

Ying Sue Huang. Resynchronization of delayed neural networks. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397

[11]

T. Jäger. Neuronal coding of pacemaker neurons -- A random dynamical systems approach. Communications on Pure & Applied Analysis, 2011, 10 (3) : 995-1009. doi: 10.3934/cpaa.2011.10.995

[12]

Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555

[13]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[14]

Benedetta Lisena. Average criteria for periodic neural networks with delay. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 761-773. doi: 10.3934/dcdsb.2014.19.761

[15]

Larry Turyn. Cellular neural networks: asymmetric templates and spatial chaos. Conference Publications, 2003, 2003 (Special) : 864-871. doi: 10.3934/proc.2003.2003.864

[16]

Joachim von Below, José A. Lubary. Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks & Heterogeneous Media, 2009, 4 (3) : 453-468. doi: 10.3934/nhm.2009.4.453

[17]

Xiaoying Han, Peter E. Kloeden, Basiru Usman. Long term behavior of a random Hopfield neural lattice model. Communications on Pure & Applied Analysis, 2019, 18 (2) : 809-824. doi: 10.3934/cpaa.2019039

[18]

Zhuwei Qin, Fuxun Yu, Chenchen Liu, Xiang Chen. How convolutional neural networks see the world --- A survey of convolutional neural network visualization methods. Mathematical Foundations of Computing, 2018, 1 (2) : 149-180. doi: 10.3934/mfc.2018008

[19]

Karim El Laithy, Martin Bogdan. Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences & Engineering, 2014, 11 (2) : 233-256. doi: 10.3934/mbe.2014.11.233

[20]

Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]