2015, 12(6): 1141-1156. doi: 10.3934/mbe.2015.12.1141

Hybrid models of cell and tissue dynamics in tumor growth

1. 

Department of Mathematics, Konkuk University, Seoul

2. 

School of Mathematics, University of Minnesota, Minneapolis, MN 55445, United States

Received  October 2014 Revised  March 2015 Published  August 2015

Hybrid models of tumor growth, in which some regions are described at the cell level and others at the continuum level, provide a flexible description that allows alterations of cell-level properties and detailed descriptions of the interaction with the tumor environment, yet retain the computational advantages of continuum models where appropriate. We review aspects of the general approach and discuss applications to breast cancer and glioblastoma.
Citation: Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141
References:
[1]

M. C. Brahimi-Horn, J. Chiche and J. Pouysségur, Hypoxia signalling controls metabolic demand,, Current opinion in cell biology, 19 (2007), 223.

[2]

F. Calvo and E. Sahai, Cell communication networks in cancer invasion,, Curr Opin Cell Biol, 23 (2011), 621.

[3]

J. D. Cheng and L. M. Weiner, Tumors and their microenvironments: Tilling the soil Commentary re: A. M. Scott et al., A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer,, Clin Cancer Res, 9 (2003), 1590.

[4]

J. C. Dallon and H. G. Othmer, How cellular movement determines the collective force generated by the Dictyostelium discoideum slug,, J. Theor. Biol., 231 (2004), 203. doi: 10.1016/j.jtbi.2004.06.015.

[5]

E. Dazert and M. N. Hall, mTOR signaling in disease,, Current opinion in cell biology, 23 (2011), 744.

[6]

T. S. Deisboeck, Z. Wang, P. Macklin and V. Cristini, Multiscale cancer modeling,, Ann. Rev. Biomed. Eng., 13 (2011), 117.

[7]

P. Friedl and S. Alexander, Cancer invasion and the microenvironment: Plasticity and reciprocity,, Cell, 147 (2011), 992.

[8]

P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer,, Nature Reviews Molecular Cell Biology, 10 (2009), 445.

[9]

J. Galle, M. Loeffler and D. Drasdo, Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro,, Biophysical J., 88 (2005), 62.

[10]

J. Godlewski, A. Bronisz, M. O. Nowicki, E. A. Chiocca and S. Lawler, microRNA-451: A conditional switch controlling glioma cell proliferation and migration,, Cell Cycle, 9 (2010), 2742.

[11]

J. Godlewski, M. O. Nowicki, A. Bronisz, G. Palatini, J. Nuovo, M. D. Lay, J. V. Brocklyn, M. C. Ostrowski, E. A. Chiocca and S. E. Lawler, MircroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells,, Molecular Cell, 37 (2010), 620.

[12]

M. E. Gracheva and H. G. Othmer, A continuum model of motility in ameboid cells,, Bull. Math. Biol., 66 (2004), 167. doi: 10.1016/j.bulm.2003.08.007.

[13]

R. Grantab, S. Sivananthan and I. F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells,, Cancer Research, 66 (2006), 1033.

[14]

P. G. Gritsenko, O. Ilina and P. Friedl, Interstitial guidance of cancer invasion,, The Journal of pathology, 226 (2012), 185.

[15]

G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder and R. K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids,, Nature Biotechnology, 15 (1997), 778.

[16]

O. Ilina, G. J. Bakker, A. Vasaturo, R. M. Hofmann and P. Friedl, Two-photon laser-generated microtracks in 3D collagen lattices: Principles of MMP-dependent and -independent collective cancer cell invasion,, Phys Biol., 8 (2011).

[17]

V. L. Jacobs, P. A. Valdes, W. F. Hickey and J. A. De Leo, Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model,, ASN NEURO, 3 (2011).

[18]

J. Kalpathy-Cramer, E. R. Gerstner, K. E. Emblem, O. C. Andronesi and B. Rosen, Advanced magnetic resonance imaging of the physical processes in human glioblastoma,, Cancer Res, 74 (2014), 4622.

[19]

J. Kim and C. V. Dang, Cancer's molecular sweet tooth and the Warburg effect,, Cancer research, 66 (2006).

[20]

Y. Kim, Regulation of cell proliferation and migration in glioblastoma: New therapeutic approach,, Frontiers in Molecular and Cellular Oncology, 3 (2013).

[21]

Y. Kim and S. Roh, A hybrid model for cell proliferation and migration in glioblastoma,, Discrete and Continuous Dynamical Systems-B, 18 (2013), 969. doi: 10.3934/dcdsb.2013.18.969.

[22]

Y. Kim, M. Stolarska and H. G. Othmer, A hybrid model for tumor spheroid growth in vitro I: Theoretical development and early results,, Math. Models Methods in Appl Sci, 17 (2007), 1773. doi: 10.1142/S0218202507002479.

[23]

Y. Kim, S. Lawler, M. O. Nowicki, E. A. Chiocca and A. Friedman, A mathematical model of Brain tumor: Pattern formation of glioma cells outside the tumor spheroid core,, J. Theo. Biol., 260 (2009), 359. doi: 10.1016/j.jtbi.2009.06.025.

[24]

Y. Kim, S. Roh, S. Lawler and A. Friedman, miR451 and AMPK/MARK mutual antagonism in glioma cells migration and proliferation,, PLoS One, 6 (2011).

[25]

Y. Kim, M. A. Stolarska and H. G. Othmer, The role of the microenvironment in tumor growth and invasion,, Progress in Biophysics and Molecular Biology, 106 (): 353.

[26]

Y. Kim, H. G. Lee, N. Dmitrieva, J. Kim, B. Kaur and A. Friedman, Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti-tumor efficacy: A mathematical model,, PLoS One, 9 (2014).

[27]

Y. Kim and H. G. Othmer, A hybrid model of tumor-stromal interactions in breast cancer,, Bull. Math. Biol., 75 (2013), 1304. doi: 10.1007/s11538-012-9787-0.

[28]

J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumours,, Nonlinearity, 23 (2010). doi: 10.1088/0951-7715/23/1/R01.

[29]

P. Macklin, S. McDougall, A. R. A. Anderson, M. A. J. Chaplain, V. Cristini and J. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth,, J. Math. Biol., 58 (2009), 765. doi: 10.1007/s00285-008-0216-9.

[30]

J. Massague, TGF-beta signal transduction,, Annual Review of Biochemistry, 67 (1998).

[31]

J. Massagué, TGF [beta] in Cancer,, Cell, 134 (2008), 215.

[32]

L. M. F. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley, Cancer as an evolutionary and ecological process,, Nature Reviews Cancer, 6 (2006), 924.

[33]

E. Palsson, A 3-D model used to explore how cell adhesion and stiffness affect cell sorting and movement in multicellular systems,, J Theor Biol, 254 (2008), 1. doi: 10.1016/j.jtbi.2008.05.004.

[34]

E. Palsson and H. G. Othmer, A model for individual and collective cell movement in dictyostelium discoideum,, Proceedings of the National Academy of Science, 97 (2000), 11448.

[35]

D. J. Silver, F. A. Siebzehnrubl, M. J. Schildts, A. T. Yachnis, G. M. Smith, A. A. Smith, B. Scheffler, B. A. Reynolds, J. Silver and D. A. Steindler, Chondroitin sulfate proteoglycans potently inhibit invasion and serve as a central organizer of the brain tumor microenvironment,, The Journal of Neuroscience, 33 (2013), 15603.

[36]

K. S. M. Smalley, M. Lioni and M. Herlyn, Life isn't flat: Taking cancer biology to the next dimension,, In Vitro Cell Dev Biol Anim, 42 (2006), 242.

[37]

A. M. Stein, T. Demuth, D. Mobley, M. Berens and L. M. Sander, A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment,, Biophys J, 92 (2007), 356.

[38]

M. A. Stolarska, Y. Kim and H. G. Othmer, Multi-scale models of cell and tissue dynamics,, Philosophical Transactions of the Royal Society A, 367 (2009), 3525. doi: 10.1098/rsta.2009.0095.

[39]

T. D. Tlsty, Stromal cells can contribute oncogenic signals,, Semin Cancer Biol, 11 (2001), 97.

[40]

R. Wani, N. S. Bharathi, J. Field, A. W. Tsang and C. M. Furdui, Oxidation of Akt2 kinase promotes cell migration and regulates G,, Cell cycle, 10 (2011), 3263.

[41]

O. Warburg, On the origin of cancer cells,, Science, 123 (1956), 309.

show all references

References:
[1]

M. C. Brahimi-Horn, J. Chiche and J. Pouysségur, Hypoxia signalling controls metabolic demand,, Current opinion in cell biology, 19 (2007), 223.

[2]

F. Calvo and E. Sahai, Cell communication networks in cancer invasion,, Curr Opin Cell Biol, 23 (2011), 621.

[3]

J. D. Cheng and L. M. Weiner, Tumors and their microenvironments: Tilling the soil Commentary re: A. M. Scott et al., A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer,, Clin Cancer Res, 9 (2003), 1590.

[4]

J. C. Dallon and H. G. Othmer, How cellular movement determines the collective force generated by the Dictyostelium discoideum slug,, J. Theor. Biol., 231 (2004), 203. doi: 10.1016/j.jtbi.2004.06.015.

[5]

E. Dazert and M. N. Hall, mTOR signaling in disease,, Current opinion in cell biology, 23 (2011), 744.

[6]

T. S. Deisboeck, Z. Wang, P. Macklin and V. Cristini, Multiscale cancer modeling,, Ann. Rev. Biomed. Eng., 13 (2011), 117.

[7]

P. Friedl and S. Alexander, Cancer invasion and the microenvironment: Plasticity and reciprocity,, Cell, 147 (2011), 992.

[8]

P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer,, Nature Reviews Molecular Cell Biology, 10 (2009), 445.

[9]

J. Galle, M. Loeffler and D. Drasdo, Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro,, Biophysical J., 88 (2005), 62.

[10]

J. Godlewski, A. Bronisz, M. O. Nowicki, E. A. Chiocca and S. Lawler, microRNA-451: A conditional switch controlling glioma cell proliferation and migration,, Cell Cycle, 9 (2010), 2742.

[11]

J. Godlewski, M. O. Nowicki, A. Bronisz, G. Palatini, J. Nuovo, M. D. Lay, J. V. Brocklyn, M. C. Ostrowski, E. A. Chiocca and S. E. Lawler, MircroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells,, Molecular Cell, 37 (2010), 620.

[12]

M. E. Gracheva and H. G. Othmer, A continuum model of motility in ameboid cells,, Bull. Math. Biol., 66 (2004), 167. doi: 10.1016/j.bulm.2003.08.007.

[13]

R. Grantab, S. Sivananthan and I. F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells,, Cancer Research, 66 (2006), 1033.

[14]

P. G. Gritsenko, O. Ilina and P. Friedl, Interstitial guidance of cancer invasion,, The Journal of pathology, 226 (2012), 185.

[15]

G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder and R. K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids,, Nature Biotechnology, 15 (1997), 778.

[16]

O. Ilina, G. J. Bakker, A. Vasaturo, R. M. Hofmann and P. Friedl, Two-photon laser-generated microtracks in 3D collagen lattices: Principles of MMP-dependent and -independent collective cancer cell invasion,, Phys Biol., 8 (2011).

[17]

V. L. Jacobs, P. A. Valdes, W. F. Hickey and J. A. De Leo, Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model,, ASN NEURO, 3 (2011).

[18]

J. Kalpathy-Cramer, E. R. Gerstner, K. E. Emblem, O. C. Andronesi and B. Rosen, Advanced magnetic resonance imaging of the physical processes in human glioblastoma,, Cancer Res, 74 (2014), 4622.

[19]

J. Kim and C. V. Dang, Cancer's molecular sweet tooth and the Warburg effect,, Cancer research, 66 (2006).

[20]

Y. Kim, Regulation of cell proliferation and migration in glioblastoma: New therapeutic approach,, Frontiers in Molecular and Cellular Oncology, 3 (2013).

[21]

Y. Kim and S. Roh, A hybrid model for cell proliferation and migration in glioblastoma,, Discrete and Continuous Dynamical Systems-B, 18 (2013), 969. doi: 10.3934/dcdsb.2013.18.969.

[22]

Y. Kim, M. Stolarska and H. G. Othmer, A hybrid model for tumor spheroid growth in vitro I: Theoretical development and early results,, Math. Models Methods in Appl Sci, 17 (2007), 1773. doi: 10.1142/S0218202507002479.

[23]

Y. Kim, S. Lawler, M. O. Nowicki, E. A. Chiocca and A. Friedman, A mathematical model of Brain tumor: Pattern formation of glioma cells outside the tumor spheroid core,, J. Theo. Biol., 260 (2009), 359. doi: 10.1016/j.jtbi.2009.06.025.

[24]

Y. Kim, S. Roh, S. Lawler and A. Friedman, miR451 and AMPK/MARK mutual antagonism in glioma cells migration and proliferation,, PLoS One, 6 (2011).

[25]

Y. Kim, M. A. Stolarska and H. G. Othmer, The role of the microenvironment in tumor growth and invasion,, Progress in Biophysics and Molecular Biology, 106 (): 353.

[26]

Y. Kim, H. G. Lee, N. Dmitrieva, J. Kim, B. Kaur and A. Friedman, Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti-tumor efficacy: A mathematical model,, PLoS One, 9 (2014).

[27]

Y. Kim and H. G. Othmer, A hybrid model of tumor-stromal interactions in breast cancer,, Bull. Math. Biol., 75 (2013), 1304. doi: 10.1007/s11538-012-9787-0.

[28]

J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumours,, Nonlinearity, 23 (2010). doi: 10.1088/0951-7715/23/1/R01.

[29]

P. Macklin, S. McDougall, A. R. A. Anderson, M. A. J. Chaplain, V. Cristini and J. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth,, J. Math. Biol., 58 (2009), 765. doi: 10.1007/s00285-008-0216-9.

[30]

J. Massague, TGF-beta signal transduction,, Annual Review of Biochemistry, 67 (1998).

[31]

J. Massagué, TGF [beta] in Cancer,, Cell, 134 (2008), 215.

[32]

L. M. F. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley, Cancer as an evolutionary and ecological process,, Nature Reviews Cancer, 6 (2006), 924.

[33]

E. Palsson, A 3-D model used to explore how cell adhesion and stiffness affect cell sorting and movement in multicellular systems,, J Theor Biol, 254 (2008), 1. doi: 10.1016/j.jtbi.2008.05.004.

[34]

E. Palsson and H. G. Othmer, A model for individual and collective cell movement in dictyostelium discoideum,, Proceedings of the National Academy of Science, 97 (2000), 11448.

[35]

D. J. Silver, F. A. Siebzehnrubl, M. J. Schildts, A. T. Yachnis, G. M. Smith, A. A. Smith, B. Scheffler, B. A. Reynolds, J. Silver and D. A. Steindler, Chondroitin sulfate proteoglycans potently inhibit invasion and serve as a central organizer of the brain tumor microenvironment,, The Journal of Neuroscience, 33 (2013), 15603.

[36]

K. S. M. Smalley, M. Lioni and M. Herlyn, Life isn't flat: Taking cancer biology to the next dimension,, In Vitro Cell Dev Biol Anim, 42 (2006), 242.

[37]

A. M. Stein, T. Demuth, D. Mobley, M. Berens and L. M. Sander, A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment,, Biophys J, 92 (2007), 356.

[38]

M. A. Stolarska, Y. Kim and H. G. Othmer, Multi-scale models of cell and tissue dynamics,, Philosophical Transactions of the Royal Society A, 367 (2009), 3525. doi: 10.1098/rsta.2009.0095.

[39]

T. D. Tlsty, Stromal cells can contribute oncogenic signals,, Semin Cancer Biol, 11 (2001), 97.

[40]

R. Wani, N. S. Bharathi, J. Field, A. W. Tsang and C. M. Furdui, Oxidation of Akt2 kinase promotes cell migration and regulates G,, Cell cycle, 10 (2011), 3263.

[41]

O. Warburg, On the origin of cancer cells,, Science, 123 (1956), 309.

[1]

J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263

[2]

Avner Friedman, Yangjin Kim. Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences & Engineering, 2011, 8 (2) : 371-383. doi: 10.3934/mbe.2011.8.371

[3]

Tiffany A. Jones, Lou Caccetta, Volker Rehbock. Optimisation modelling of cancer growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 115-123. doi: 10.3934/dcdsb.2017006

[4]

Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687-698. doi: 10.3934/mbe.2007.4.687

[5]

Urszula Ledzewicz, Heinz Schättler, Shuo Wang. On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks & Heterogeneous Media, 2019, 14 (1) : 131-147. doi: 10.3934/nhm.2019007

[6]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[7]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

[8]

Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar. The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 547-559. doi: 10.3934/mbe.2009.6.547

[9]

Ebraheem O. Alzahrani, Yang Kuang. Nutrient limitations as an explanation of Gompertzian tumor growth. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 357-372. doi: 10.3934/dcdsb.2016.21.357

[10]

Andrea Tosin. Multiphase modeling and qualitative analysis of the growth of tumor cords. Networks & Heterogeneous Media, 2008, 3 (1) : 43-83. doi: 10.3934/nhm.2008.3.43

[11]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[12]

Manuel Delgado, Ítalo Bruno Mendes Duarte, Antonio Suárez Fernández. Nonlocal elliptic system arising from the growth of cancer stem cells. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1767-1795. doi: 10.3934/dcdsb.2018083

[13]

Evans K. Afenya, Calixto P. Calderón. Growth kinetics of cancer cells prior to detection and treatment: An alternative view. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 25-28. doi: 10.3934/dcdsb.2004.4.25

[14]

Alexander P. Krishchenko, Konstantin E. Starkov. The four-dimensional Kirschner-Panetta type cancer model: How to obtain tumor eradication?. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1243-1254. doi: 10.3934/mbe.2018057

[15]

K. E. Starkov, Svetlana Bunimovich-Mendrazitsky. Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1059-1075. doi: 10.3934/mbe.2016030

[16]

John D. Nagy. The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity. Mathematical Biosciences & Engineering, 2005, 2 (2) : 381-418. doi: 10.3934/mbe.2005.2.381

[17]

Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347-368. doi: 10.3934/mbe.2012.9.347

[18]

Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with Michealis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2383-2405. doi: 10.3934/dcdsb.2019100

[19]

Ahuod Alsheri, Ebraheem O. Alzahrani, Asim Asiri, Mohamed M. El-Dessoky, Yang Kuang. Tumor growth dynamics with nutrient limitation and cell proliferation time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3771-3782. doi: 10.3934/dcdsb.2017189

[20]

Mengli Hao, Ting Gao, Jinqiao Duan, Wei Xu. Non-Gaussian dynamics of a tumor growth system with immunization. Inverse Problems & Imaging, 2013, 7 (3) : 697-716. doi: 10.3934/ipi.2013.7.697

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]