2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233

Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model

1. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, United States

2. 

Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC 27695-8205

Received  April 2014 Revised  September 2014 Published  December 2014

We study a quasilinear hierarchically size-structured population model presented in [4]. In this model the growth, mortality and reproduction rates are assumed to depend on a function of the population density. In [4] we showed that solutions to this model can become singular (measure-valued) in finite time even if all the individual parameters are smooth. Therefore, in this paper we develop a first order finite difference scheme to compute these measure-valued solutions. Convergence analysis for this method is provided. We also develop a high resolution second order scheme to compute the measure-valued solution of the model and perform a comparative study between the two schemes.
Citation: Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233
References:
[1]

A. S. Ackleh, L. J. S. Allen and J. Carter, Establishing a beachhead: A stochastic population model with an allee effect applied to species invasion,, Theor. Popul. Biol., 71 (2007), 290. doi: 10.1016/j.tpb.2006.12.006.

[2]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size structured model: Well-posedness and approximation,, Appl. Math. Optim., 51 (2005), 35. doi: 10.1007/s00245-004-0806-2.

[3]

A. S. Ackleh and K. Ito, A finite difference scheme for the nonlinear-size structured population model,, J. Num. Funct. Anal. Optimization, 18 (1997), 865. doi: 10.1080/01630569708816798.

[4]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population,, J. Differential Equations, 217 (2005), 431. doi: 10.1016/j.jde.2004.12.013.

[5]

K. W. Blayneh, Hierarchical size-structured population model,, Dynamic Systems Appl., 9 (2000), 527.

[6]

A. Calsina and J. Saldana, Asymptotic behaviour of a model of hierarchically structured population,, J. Math. Biol., 35 (1997), 967. doi: 10.1007/s002850050085.

[7]

J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws,, J. Differetial Equations, 252 (2012), 3245. doi: 10.1016/j.jde.2011.11.003.

[8]

J. A. Carrillo, P. Gwiazda and A. Ulikowska, Splitting-particle methods for structured population models: Convergence and applications,, Math. Models Methods Appl. Sci., 24 (2014), 2171. doi: 10.1142/S0218202514500183.

[9]

J. M. Cushing, The dynamics of hierarchical age-structured populations,, J. Math. Biol., 32 (1994), 705. doi: 10.1007/BF00163023.

[10]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models, II Nonlinear theory,, J. Math. Biol., 43 (2001), 157. doi: 10.1007/s002850170002.

[11]

P. Gwiazda, J. Jablonski, A. Marciniak-Czochra and A. Ulikowska, Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded Lipschitz distance,, Num. Meth. Partial Diff. Eq., 30 (2014), 1797. doi: 10.1002/num.21879.

[12]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients,, J. Differential Equations, 248 (2010), 2703. doi: 10.1016/j.jde.2010.02.010.

[13]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755.

[14]

E. A. Kraev, Existence and uniqueness for height structured hierarchical populations models,, Natural Resource Modeling, 14 (2001), 45. doi: 10.1111/j.1939-7445.2001.tb00050.x.

[15]

S. Kruskov, First-order quasilinear equations in several independent variables,, Mat. Sb., 123 (1970), 228.

[16]

J. Shen, C.-W. Shu and M. Zhang, High resolution schemes for a hierarchical size-structured model,, SIAM J. Numer. Anal., 45 (2007), 352. doi: 10.1137/050638126.

[17]

C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes,, J. Comput. Phys., 77 (1988), 439. doi: 10.1016/0021-9991(88)90177-5.

[18]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-0873-0.

show all references

References:
[1]

A. S. Ackleh, L. J. S. Allen and J. Carter, Establishing a beachhead: A stochastic population model with an allee effect applied to species invasion,, Theor. Popul. Biol., 71 (2007), 290. doi: 10.1016/j.tpb.2006.12.006.

[2]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size structured model: Well-posedness and approximation,, Appl. Math. Optim., 51 (2005), 35. doi: 10.1007/s00245-004-0806-2.

[3]

A. S. Ackleh and K. Ito, A finite difference scheme for the nonlinear-size structured population model,, J. Num. Funct. Anal. Optimization, 18 (1997), 865. doi: 10.1080/01630569708816798.

[4]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population,, J. Differential Equations, 217 (2005), 431. doi: 10.1016/j.jde.2004.12.013.

[5]

K. W. Blayneh, Hierarchical size-structured population model,, Dynamic Systems Appl., 9 (2000), 527.

[6]

A. Calsina and J. Saldana, Asymptotic behaviour of a model of hierarchically structured population,, J. Math. Biol., 35 (1997), 967. doi: 10.1007/s002850050085.

[7]

J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws,, J. Differetial Equations, 252 (2012), 3245. doi: 10.1016/j.jde.2011.11.003.

[8]

J. A. Carrillo, P. Gwiazda and A. Ulikowska, Splitting-particle methods for structured population models: Convergence and applications,, Math. Models Methods Appl. Sci., 24 (2014), 2171. doi: 10.1142/S0218202514500183.

[9]

J. M. Cushing, The dynamics of hierarchical age-structured populations,, J. Math. Biol., 32 (1994), 705. doi: 10.1007/BF00163023.

[10]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models, II Nonlinear theory,, J. Math. Biol., 43 (2001), 157. doi: 10.1007/s002850170002.

[11]

P. Gwiazda, J. Jablonski, A. Marciniak-Czochra and A. Ulikowska, Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded Lipschitz distance,, Num. Meth. Partial Diff. Eq., 30 (2014), 1797. doi: 10.1002/num.21879.

[12]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients,, J. Differential Equations, 248 (2010), 2703. doi: 10.1016/j.jde.2010.02.010.

[13]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755.

[14]

E. A. Kraev, Existence and uniqueness for height structured hierarchical populations models,, Natural Resource Modeling, 14 (2001), 45. doi: 10.1111/j.1939-7445.2001.tb00050.x.

[15]

S. Kruskov, First-order quasilinear equations in several independent variables,, Mat. Sb., 123 (1970), 228.

[16]

J. Shen, C.-W. Shu and M. Zhang, High resolution schemes for a hierarchical size-structured model,, SIAM J. Numer. Anal., 45 (2007), 352. doi: 10.1137/050638126.

[17]

C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes,, J. Comput. Phys., 77 (1988), 439. doi: 10.1016/0021-9991(88)90177-5.

[18]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-0873-0.

[1]

Qihua Huang, Hao Wang. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness. Mathematical Biosciences & Engineering, 2016, 13 (4) : 697-722. doi: 10.3934/mbe.2016015

[2]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[3]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[4]

Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a size-structured cannibalism population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1975-1998. doi: 10.3934/dcdsb.2016032

[5]

Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical size-structured population model. Evolution Equations & Control Theory, 2018, 7 (2) : 293-316. doi: 10.3934/eect.2018015

[6]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[7]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[8]

L. M. Abia, O. Angulo, J.C. López-Marcos. Size-structured population dynamics models and their numerical solutions. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1203-1222. doi: 10.3934/dcdsb.2004.4.1203

[9]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[10]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[11]

József Z. Farkas, Thomas Hagen. Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1825-1839. doi: 10.3934/cpaa.2009.8.1825

[12]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[13]

Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891

[14]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[15]

Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719

[16]

Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3439-3451. doi: 10.3934/dcdsb.2018327

[17]

Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu. Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences & Engineering, 2005, 2 (2) : 289-315. doi: 10.3934/mbe.2005.2.289

[18]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[19]

Keith E. Howard. A size structured model of cell dwarfism. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 471-484. doi: 10.3934/dcdsb.2001.1.471

[20]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic & Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

[Back to Top]