2016, 13(2): 281-301. doi: 10.3934/mbe.2015003

Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state

1. 

Applied Mathematics Department, Universitat Politècnica de València, Camino de Vera 46022 Valencia, Spain, Spain

2. 

Biomedical Synergy, Electronic Engineering Department, Universitat Politècnica de València, Camino de Vera 46022 Valencia, Spain

Received  March 2015 Revised  July 2015 Published  November 2015

It has been suggested that during RF thermal ablation of biological tissue the thermal lesion could reach an equilibrium size after 1-2 minutes. Our objective was to determine under which circumstances of electrode geometry (needle-like vs. ball-tip), electrode type (dry vs. cooled) and blood perfusion the temperature will reach a steady state at any point in the tissue. We solved the bioheat equation analytically both in cylindrical and spherical coordinates and the resultant limit temperatures were compared. Our results demonstrate mathematically that tissue temperature reaches a steady value in all cases except for cylindrical coordinates without the blood perfusion term, both for dry and cooled electrodes, where temperature increases infinitely. This result is only true when the boundary condition far from the active electrode is considered to be at infinitum. In contrast, when a finite and sufficiently large domain is considered, temperature reaches always a steady state.
Citation: J. A. López Molina, M. J. Rivera, E. Berjano. Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state. Mathematical Biosciences & Engineering, 2016, 13 (2) : 281-301. doi: 10.3934/mbe.2015003
References:
[1]

B. L. Yun, J. M. Lee, J. H. Baek, S. H. Kim, J. Y. Lee, J. K. Han and B. I. Choi, Radiofrequency ablation for treating liver metastases from a non-colorectal origin,, Korean Journal Radiology, 12 (2011), 579. doi: 10.3348/kjr.2011.12.5.579. Google Scholar

[2]

E. R. Cosman Jr. and E. R. Cosman Sr., Electric and thermal field effects in tissue around radiofrequency electrodes,, Pain Medicine, 6 (2005), 405. Google Scholar

[3]

A. Thiagalingam, C. R. Campbell, A. C. Boyd, V. E. Eipper, D. L. Ross and P. Kovoor, Cooled intramural needle catheter ablation creates deeper lesions than irrigated tip catheter ablation,, Pacing and Clinical Electrophysiology, 27 (2004), 965. doi: 10.1111/j.1540-8159.2004.00566.x. Google Scholar

[4]

S. I. Cho, B. Y. Chung, M. G. Cho, J. H. Baek, C. W. Park, C. H. Lee and H. O. Kim, Evaluation of the clinical efficacy of fractional radiofrequency microneedle treatament in acne scars and large facial pores,, Dermatologic survey, (2012), 1017. Google Scholar

[5]

T. H. Everett 4th, K. W. Lee, E. E. Wilson, J. M. Guerra, P. D. Varosy and J. E. Olgin, Safety profiles and lesion size of different radiofrequency ablation technologies: A comparison of large tip, open and closed irrigation catheters,, Journal of Cardiovascular Electrophysiology, 20 (2009), 325. Google Scholar

[6]

Y. Nakasone, O. Ikeda, K. Kawanaka, K. Yokoyama and Y. Yamashita, Radiofrequency ablation in a porcine kidney model: Effect of occlusion of the arterial blood supply on ablation temperature, coagulation diameter, and histology,, Acta Radiologica, 53 (2012), 852. doi: 10.1258/ar.2012.110530. Google Scholar

[7]

E. J. Berjano, Theoretical modeling for radiofrequency ablation: State-of-the-art and challenges for the future,, Biomedical Engineering Online, 18 (2006). Google Scholar

[8]

Y. Jiang, W. Chong, M. C. Diel Rambo, L. A. Bortolaia and A. C. Valdiero, Analytical solution of temperature distributions in radiofrequency ablation due to a point source of electrical current,, 60 Brasilean Conference on Dynamics, (2007), 21. Google Scholar

[9]

M. J. Rivera, M. Trujillo, V. Romero García, J. A. López Molina and E. J. Berjano, Numerical resolution of the hyperbolic heat equation using smooted mathematical functions instead of Heaviside and dirac delta distributions,, International Communications in Heat and Mass Transfer, 46 (2013), 7. Google Scholar

[10]

J. D. Wiley and J. G. Webster, Analysis and control of the current distribution under circular dispersive electrodes,, IEEE Transactions on Biomedical Engineering, 29 (1982), 381. doi: 10.1109/TBME.1982.324910. Google Scholar

[11]

K. M. Overmyer, J. A. Pearce and D. P. de Witt, Measurements of temperature distributions at electro-surgical dispersive electrode sites,, Transactions of the ASME, 101 (1979), 66. Google Scholar

[12]

W. M. Honig, The mechanism of cutting in electrosurgery,, IEEE Transactions on Biomedical Engineering, 22 (1975), 58. doi: 10.1109/TBME.1975.324541. Google Scholar

[13]

A. Erez and A. Shitzer, Controlled destruction and temperature distributions in biological tissues subjected to monoactive electroagulation,, Journal of Biomechanical Engineering, 102 (1980), 42. Google Scholar

[14]

D. E. Haines and D. D. Watson, Tissue heating durin radiofrequency catheter ablation: A thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall,, Pacing and Clinical Electrophysiology, 12 (1989), 962. Google Scholar

[15]

D. Haemmerich, L. Chachati, A. S. Wright, D. M. Mahvi, F. T. Lee Jr. and J. G. Webster, Hepatic radiofrequency ablation with internally cooled probes: Effect of coolant temperature on lesion size,, IEEE Transactions on Biomedical Engineering, 50 (2003), 493. doi: 10.1109/TBME.2003.809488. Google Scholar

[16]

J. A. López Molina, M. J. Rivera, M. Trujillo and E. J. Berjano, Effect of the thermal wave in radiofrequency ablation modeling: An analytical study,, Physics in Medicine and Biology, 53 (2008), 1447. doi: 10.1088/0031-9155/53/5/018. Google Scholar

[17]

J. A. López Molina, M. J. Rivera and E. J. Berjano, Analytical model based on a cylindrical geometry to study of RF ablation with needle-like internally cooled electrode,, Mathematical Problems in Engineering, (2012). Google Scholar

[18]

M. J. Rivera, J. A. López Molina, M. Trujillo and E. J. Berjano, Theoretical modeling of RF ablation with internally cooled electrodes: Comparative study of different thermal boundary conditions at the electrode-tissue interface,, Mathematical Biosciences and Engineering, 6 (2009), 611. doi: 10.3934/mbe.2009.6.611. Google Scholar

[19]

G. N. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge Mathematical Library, (1995). Google Scholar

[20]

E. J. Berjano, E. Navarro, V. Ribera, J. Gorris and J. L. Alió, Radiofrequency heating of the cornea: An engineering review of electrodes and applicators,, Open Biomedical Engineering Journal, 11 (2007), 71. Google Scholar

[21]

M. Trujillo, J. Alba and E. J. Berjano, Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes,, International Journal of Hyperthermia, 28 (2012), 62. doi: 10.3109/02656736.2011.631076. Google Scholar

[22]

I. A. Chang, Finite elements analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity,, Biomedical Engineering Online, 8 (2003). Google Scholar

[23]

I. A. Chang and U. D. Nguyen, Thermal modeling of lesions growth with radiofrequency ablation devices,, Biomedical Engineering Online, 6 (2004). Google Scholar

show all references

References:
[1]

B. L. Yun, J. M. Lee, J. H. Baek, S. H. Kim, J. Y. Lee, J. K. Han and B. I. Choi, Radiofrequency ablation for treating liver metastases from a non-colorectal origin,, Korean Journal Radiology, 12 (2011), 579. doi: 10.3348/kjr.2011.12.5.579. Google Scholar

[2]

E. R. Cosman Jr. and E. R. Cosman Sr., Electric and thermal field effects in tissue around radiofrequency electrodes,, Pain Medicine, 6 (2005), 405. Google Scholar

[3]

A. Thiagalingam, C. R. Campbell, A. C. Boyd, V. E. Eipper, D. L. Ross and P. Kovoor, Cooled intramural needle catheter ablation creates deeper lesions than irrigated tip catheter ablation,, Pacing and Clinical Electrophysiology, 27 (2004), 965. doi: 10.1111/j.1540-8159.2004.00566.x. Google Scholar

[4]

S. I. Cho, B. Y. Chung, M. G. Cho, J. H. Baek, C. W. Park, C. H. Lee and H. O. Kim, Evaluation of the clinical efficacy of fractional radiofrequency microneedle treatament in acne scars and large facial pores,, Dermatologic survey, (2012), 1017. Google Scholar

[5]

T. H. Everett 4th, K. W. Lee, E. E. Wilson, J. M. Guerra, P. D. Varosy and J. E. Olgin, Safety profiles and lesion size of different radiofrequency ablation technologies: A comparison of large tip, open and closed irrigation catheters,, Journal of Cardiovascular Electrophysiology, 20 (2009), 325. Google Scholar

[6]

Y. Nakasone, O. Ikeda, K. Kawanaka, K. Yokoyama and Y. Yamashita, Radiofrequency ablation in a porcine kidney model: Effect of occlusion of the arterial blood supply on ablation temperature, coagulation diameter, and histology,, Acta Radiologica, 53 (2012), 852. doi: 10.1258/ar.2012.110530. Google Scholar

[7]

E. J. Berjano, Theoretical modeling for radiofrequency ablation: State-of-the-art and challenges for the future,, Biomedical Engineering Online, 18 (2006). Google Scholar

[8]

Y. Jiang, W. Chong, M. C. Diel Rambo, L. A. Bortolaia and A. C. Valdiero, Analytical solution of temperature distributions in radiofrequency ablation due to a point source of electrical current,, 60 Brasilean Conference on Dynamics, (2007), 21. Google Scholar

[9]

M. J. Rivera, M. Trujillo, V. Romero García, J. A. López Molina and E. J. Berjano, Numerical resolution of the hyperbolic heat equation using smooted mathematical functions instead of Heaviside and dirac delta distributions,, International Communications in Heat and Mass Transfer, 46 (2013), 7. Google Scholar

[10]

J. D. Wiley and J. G. Webster, Analysis and control of the current distribution under circular dispersive electrodes,, IEEE Transactions on Biomedical Engineering, 29 (1982), 381. doi: 10.1109/TBME.1982.324910. Google Scholar

[11]

K. M. Overmyer, J. A. Pearce and D. P. de Witt, Measurements of temperature distributions at electro-surgical dispersive electrode sites,, Transactions of the ASME, 101 (1979), 66. Google Scholar

[12]

W. M. Honig, The mechanism of cutting in electrosurgery,, IEEE Transactions on Biomedical Engineering, 22 (1975), 58. doi: 10.1109/TBME.1975.324541. Google Scholar

[13]

A. Erez and A. Shitzer, Controlled destruction and temperature distributions in biological tissues subjected to monoactive electroagulation,, Journal of Biomechanical Engineering, 102 (1980), 42. Google Scholar

[14]

D. E. Haines and D. D. Watson, Tissue heating durin radiofrequency catheter ablation: A thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall,, Pacing and Clinical Electrophysiology, 12 (1989), 962. Google Scholar

[15]

D. Haemmerich, L. Chachati, A. S. Wright, D. M. Mahvi, F. T. Lee Jr. and J. G. Webster, Hepatic radiofrequency ablation with internally cooled probes: Effect of coolant temperature on lesion size,, IEEE Transactions on Biomedical Engineering, 50 (2003), 493. doi: 10.1109/TBME.2003.809488. Google Scholar

[16]

J. A. López Molina, M. J. Rivera, M. Trujillo and E. J. Berjano, Effect of the thermal wave in radiofrequency ablation modeling: An analytical study,, Physics in Medicine and Biology, 53 (2008), 1447. doi: 10.1088/0031-9155/53/5/018. Google Scholar

[17]

J. A. López Molina, M. J. Rivera and E. J. Berjano, Analytical model based on a cylindrical geometry to study of RF ablation with needle-like internally cooled electrode,, Mathematical Problems in Engineering, (2012). Google Scholar

[18]

M. J. Rivera, J. A. López Molina, M. Trujillo and E. J. Berjano, Theoretical modeling of RF ablation with internally cooled electrodes: Comparative study of different thermal boundary conditions at the electrode-tissue interface,, Mathematical Biosciences and Engineering, 6 (2009), 611. doi: 10.3934/mbe.2009.6.611. Google Scholar

[19]

G. N. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge Mathematical Library, (1995). Google Scholar

[20]

E. J. Berjano, E. Navarro, V. Ribera, J. Gorris and J. L. Alió, Radiofrequency heating of the cornea: An engineering review of electrodes and applicators,, Open Biomedical Engineering Journal, 11 (2007), 71. Google Scholar

[21]

M. Trujillo, J. Alba and E. J. Berjano, Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes,, International Journal of Hyperthermia, 28 (2012), 62. doi: 10.3109/02656736.2011.631076. Google Scholar

[22]

I. A. Chang, Finite elements analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity,, Biomedical Engineering Online, 8 (2003). Google Scholar

[23]

I. A. Chang and U. D. Nguyen, Thermal modeling of lesions growth with radiofrequency ablation devices,, Biomedical Engineering Online, 6 (2004). Google Scholar

[1]

María J. Rivera, Juan A. López Molina, Macarena Trujillo, Enrique J. Berjano. Theoretical modeling of RF ablation with internally cooled electrodes: Comparative study of different thermal boundary conditions at the electrode-tissue interface. Mathematical Biosciences & Engineering, 2009, 6 (3) : 611-627. doi: 10.3934/mbe.2009.6.611

[2]

Harsh Vardhan Jain, Avner Friedman. Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 945-967. doi: 10.3934/dcdsb.2013.18.945

[3]

Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic & Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063

[4]

Ruifeng Zhang, Nan Liu, Man An. Analytical solutions of Skyrme model. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2201-2211. doi: 10.3934/dcdss.2016092

[5]

Lili Du, Mingshu Fan. Thermal runaway for a nonlinear diffusion model in thermal electricity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2349-2368. doi: 10.3934/dcds.2013.33.2349

[6]

Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks & Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527

[7]

Georgy Th. Guria, Miguel A. Herrero, Ksenia E. Zlobina. A mathematical model of blood coagulation induced by activation sources. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 175-194. doi: 10.3934/dcds.2009.25.175

[8]

Nuutti Hyvönen, Harri Hakula, Sampsa Pursiainen. Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 299-317. doi: 10.3934/ipi.2007.1.299

[9]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[10]

Olivier Delestre, Arthur R. Ghigo, José-Maria Fullana, Pierre-Yves Lagrée. A shallow water with variable pressure model for blood flow simulation. Networks & Heterogeneous Media, 2016, 11 (1) : 69-87. doi: 10.3934/nhm.2016.11.69

[11]

Seunghee Lee, Ganguk Hwang. A new analytical model for optimized cognitive radio networks based on stochastic geometry. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1883-1899. doi: 10.3934/jimo.2017023

[12]

Jean-Michel Roquejoffre, Juan-Luis Vázquez. Ignition and propagation in an integro-differential model for spherical flames. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 379-387. doi: 10.3934/dcdsb.2002.2.379

[13]

Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. The mathematical and theoretical biology institute - a model of mentorship through research. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1351-1363. doi: 10.3934/mbe.2013.10.1351

[14]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. Thermal control of the Souza-Auricchio model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 369-386. doi: 10.3934/dcdss.2013.6.369

[15]

Chengxia Lei, Fujun Li, Jiang Liu. Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4499-4517. doi: 10.3934/dcdsb.2018173

[16]

Elena Bonetti, Cecilia Cavaterra, Francesco Freddi, Maurizio Grasselli, Roberto Natalini. A nonlinear model for marble sulphation including surface rugosity: Theoretical and numerical results. Communications on Pure & Applied Analysis, 2019, 18 (2) : 977-998. doi: 10.3934/cpaa.2019048

[17]

J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653

[18]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[19]

Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences & Engineering, 2009, 6 (1) : 27-40. doi: 10.3934/mbe.2009.6.27

[20]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]