2016, 13(2): 425-442. doi: 10.3934/mbe.2015010

Modeling the intrinsic dynamics of foot-and-mouth disease

1. 

Department of Mathematics, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe

2. 

NSF Center for Integrated Pest Management, NC State University, Raleigh, NC 27606, United States

3. 

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States

Received  April 2015 Revised  November 2015 Published  December 2015

We propose a new mathematical modeling framework to investigate the transmission and spread of foot-and-mouth disease. Our models incorporate relevant biological and ecological factors, vaccination effects, and seasonal impacts during the complex interaction among susceptible, vaccinated, exposed, infected, carrier, and recovered animals. We conduct both epidemic and endemic analysis, with a focus on the threshold dynamics characterized by the basic reproduction numbers. In addition, numerical simulation results are presented to demonstrate the analytical findings.
Citation: Steady Mushayabasa, Drew Posny, Jin Wang. Modeling the intrinsic dynamics of foot-and-mouth disease. Mathematical Biosciences & Engineering, 2016, 13 (2) : 425-442. doi: 10.3934/mbe.2015010
References:
[1]

F. Aftosa, Foot and Mouth Disease,, , (2014). Google Scholar

[2]

A. Alexandersen, Z. Zhang and I. A. Donaldson, Aspects of the persistence of foot-and -mouth disease virus in animals-the carrier problem,, Microbes and Infection, 4 (2002), 1099. Google Scholar

[3]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,, Mathematical Biosciences and Engineering, 1 (2004), 361. doi: 10.3934/mbe.2004.1.361. Google Scholar

[4]

M. E. Chase-Topping, I. Handel, B. M. Bankowski, N. D. Juleff, D. Gibson, S. J. Cox, M. A. Windsor, E. Reid, C. Doel, R. Howey, P. V. Barnett, M. E. J. Woolhouse and B. Charleston, Understanding foot-and-mouth disease virus transmission biology: Identification of the indicators of infectiousness,, Veterinary Research, 44 (2013). doi: 10.1186/1297-9716-44-46. Google Scholar

[5]

T. A. Dekker, H. Vernooij, A. Bouma and A. Stegeman, Rate of foot-and-mouth disease virus transmission by carriers quantified from experimental data,, Risk Analysis, 28 (2008), 303. doi: 10.1111/j.1539-6924.2008.01020.x. Google Scholar

[6]

O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, Wiley, (2000). Google Scholar

[7]

J. Gloster, H. Champion, J. Sorensen, T. Mikkelsen, D. Ryall, P. Astrup, S. Alexandersen and A. Donaldson, Airborne transmission of foot-and-mouth disease virus from Burnside Farm, Heddon-on-the-Wall, Northumberland, during the 2001 epidemic in the United Kingdom,, The Veterinary Record, 152 (2003), 525. Google Scholar

[8]

R. R. Kao, L. Danon, D. M. Green and I. Z. Kiss, Demographic structure and pathogen dynamics on the network of livestock movements in Great Britain,, Proceedings of the Royal Society B, 273 (2006), 1999. doi: 10.1098/rspb.2006.3505. Google Scholar

[9]

M. J. Keeling, M. E. J. Woolhouse, R. M. May, G. Davies and B. T. Grenfell, Modelling vaccination strategies against foot-and-mouth disease,, Nature, 421 (2003), 136. doi: 10.1038/nature01343. Google Scholar

[10]

R. P. Kitching, Identification of foot and mouth disease virus carrier and subclinically infected animals and differentiation from vaccinated animals,, Revue scientifique et technique (International Office of Epizootics), 21 (2002), 531. Google Scholar

[11]

R. P. Kitching, A. M. Humber and M. V. Thrusfield, A review of foot-and-mouth disease with special consideration for the clinical and epidemiological factors relevant to predictive modelling of the disease,, Veterinary Journal, 169 (2005), 197. doi: 10.1016/j.tvjl.2004.06.001. Google Scholar

[12]

T. J. Knight-Jones, A. N. Bulut, K. D. Stark, D. U. Pfeiffer, K. J. Sumption and D. J. Paton, Retrospective evaluation of foot-and-mouth disease vaccine effectiveness in Turkey,, Vaccine, 32 (2014), 1848. doi: 10.1016/j.vaccine.2014.01.071. Google Scholar

[13]

G. E. Lahodny Jr., R. Gautam and R. Ivanek, Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease,, Journal of Biological Dynamics, 9 (2015), 128. doi: 10.1080/17513758.2014.954763. Google Scholar

[14]

J. S. LaSalle, The stability of Dynamical Systems,, SIAM: Philadelphia, (1976). Google Scholar

[15]

S. Mushayabasa, C. P. Bhunu and M. Dhlamini, Impact of vaccination and culling on controlling foot and mouth disease: a mathematical modeling approach,, World Journal of Vaccines, 1 (2011), 156. doi: 10.4236/wjv.2011.14016. Google Scholar

[16]

S. Parida, Vaccination against foot-and-mouth disease virus: Strategies and effectiveness,, Expert Review of Vaccines, 8 (2009), 347. doi: 10.1586/14760584.8.3.347. Google Scholar

[17]

D. Posny and J. Wang, Modelling cholera in periodic environments,, Journal of Biological Dynamics, 8 (2014), 1. doi: 10.1080/17513758.2014.896482. Google Scholar

[18]

D. Posny and J. Wang, Computing basic reproductive numbers for epidemiological models in nonhomogeneous environments,, Applied Mathematics and Computation, 242 (2014), 473. doi: 10.1016/j.amc.2014.05.079. Google Scholar

[19]

N. Ringa and C. T. Bauch, Impacts of constrained culling and vaccination on control of foot and mouth disease in near-endemic settings: A pair approximation model,, Epidemics, 9 (2014), 18. doi: 10.1016/j.epidem.2014.09.008. Google Scholar

[20]

Y. Sinkala, M. Simuunza, J. B. Muma, D. U. Pfeiffer, C. J. Kasanga and A. Mweene, Foot and mouth disease in Zambia: Spatial and temporal distributions of outbreaks, assessment of clusters and implications for control,, Onderstepoort Journal of Veterinary Research, 81 (2014). doi: 10.4102/ojvr.v81i2.741. Google Scholar

[21]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[22]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, Journal of Dynamics and Differential Equations, 20 (2008), 699. doi: 10.1007/s10884-008-9111-8. Google Scholar

[23]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1. Google Scholar

show all references

References:
[1]

F. Aftosa, Foot and Mouth Disease,, , (2014). Google Scholar

[2]

A. Alexandersen, Z. Zhang and I. A. Donaldson, Aspects of the persistence of foot-and -mouth disease virus in animals-the carrier problem,, Microbes and Infection, 4 (2002), 1099. Google Scholar

[3]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,, Mathematical Biosciences and Engineering, 1 (2004), 361. doi: 10.3934/mbe.2004.1.361. Google Scholar

[4]

M. E. Chase-Topping, I. Handel, B. M. Bankowski, N. D. Juleff, D. Gibson, S. J. Cox, M. A. Windsor, E. Reid, C. Doel, R. Howey, P. V. Barnett, M. E. J. Woolhouse and B. Charleston, Understanding foot-and-mouth disease virus transmission biology: Identification of the indicators of infectiousness,, Veterinary Research, 44 (2013). doi: 10.1186/1297-9716-44-46. Google Scholar

[5]

T. A. Dekker, H. Vernooij, A. Bouma and A. Stegeman, Rate of foot-and-mouth disease virus transmission by carriers quantified from experimental data,, Risk Analysis, 28 (2008), 303. doi: 10.1111/j.1539-6924.2008.01020.x. Google Scholar

[6]

O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, Wiley, (2000). Google Scholar

[7]

J. Gloster, H. Champion, J. Sorensen, T. Mikkelsen, D. Ryall, P. Astrup, S. Alexandersen and A. Donaldson, Airborne transmission of foot-and-mouth disease virus from Burnside Farm, Heddon-on-the-Wall, Northumberland, during the 2001 epidemic in the United Kingdom,, The Veterinary Record, 152 (2003), 525. Google Scholar

[8]

R. R. Kao, L. Danon, D. M. Green and I. Z. Kiss, Demographic structure and pathogen dynamics on the network of livestock movements in Great Britain,, Proceedings of the Royal Society B, 273 (2006), 1999. doi: 10.1098/rspb.2006.3505. Google Scholar

[9]

M. J. Keeling, M. E. J. Woolhouse, R. M. May, G. Davies and B. T. Grenfell, Modelling vaccination strategies against foot-and-mouth disease,, Nature, 421 (2003), 136. doi: 10.1038/nature01343. Google Scholar

[10]

R. P. Kitching, Identification of foot and mouth disease virus carrier and subclinically infected animals and differentiation from vaccinated animals,, Revue scientifique et technique (International Office of Epizootics), 21 (2002), 531. Google Scholar

[11]

R. P. Kitching, A. M. Humber and M. V. Thrusfield, A review of foot-and-mouth disease with special consideration for the clinical and epidemiological factors relevant to predictive modelling of the disease,, Veterinary Journal, 169 (2005), 197. doi: 10.1016/j.tvjl.2004.06.001. Google Scholar

[12]

T. J. Knight-Jones, A. N. Bulut, K. D. Stark, D. U. Pfeiffer, K. J. Sumption and D. J. Paton, Retrospective evaluation of foot-and-mouth disease vaccine effectiveness in Turkey,, Vaccine, 32 (2014), 1848. doi: 10.1016/j.vaccine.2014.01.071. Google Scholar

[13]

G. E. Lahodny Jr., R. Gautam and R. Ivanek, Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease,, Journal of Biological Dynamics, 9 (2015), 128. doi: 10.1080/17513758.2014.954763. Google Scholar

[14]

J. S. LaSalle, The stability of Dynamical Systems,, SIAM: Philadelphia, (1976). Google Scholar

[15]

S. Mushayabasa, C. P. Bhunu and M. Dhlamini, Impact of vaccination and culling on controlling foot and mouth disease: a mathematical modeling approach,, World Journal of Vaccines, 1 (2011), 156. doi: 10.4236/wjv.2011.14016. Google Scholar

[16]

S. Parida, Vaccination against foot-and-mouth disease virus: Strategies and effectiveness,, Expert Review of Vaccines, 8 (2009), 347. doi: 10.1586/14760584.8.3.347. Google Scholar

[17]

D. Posny and J. Wang, Modelling cholera in periodic environments,, Journal of Biological Dynamics, 8 (2014), 1. doi: 10.1080/17513758.2014.896482. Google Scholar

[18]

D. Posny and J. Wang, Computing basic reproductive numbers for epidemiological models in nonhomogeneous environments,, Applied Mathematics and Computation, 242 (2014), 473. doi: 10.1016/j.amc.2014.05.079. Google Scholar

[19]

N. Ringa and C. T. Bauch, Impacts of constrained culling and vaccination on control of foot and mouth disease in near-endemic settings: A pair approximation model,, Epidemics, 9 (2014), 18. doi: 10.1016/j.epidem.2014.09.008. Google Scholar

[20]

Y. Sinkala, M. Simuunza, J. B. Muma, D. U. Pfeiffer, C. J. Kasanga and A. Mweene, Foot and mouth disease in Zambia: Spatial and temporal distributions of outbreaks, assessment of clusters and implications for control,, Onderstepoort Journal of Veterinary Research, 81 (2014). doi: 10.4102/ojvr.v81i2.741. Google Scholar

[21]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[22]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, Journal of Dynamics and Differential Equations, 20 (2008), 699. doi: 10.1007/s10884-008-9111-8. Google Scholar

[23]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1. Google Scholar

[1]

Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 221-240. doi: 10.3934/dcdsb.2004.4.221

[2]

Roberto A. Saenz, Herbert W. Hethcote. Competing species models with an infectious disease. Mathematical Biosciences & Engineering, 2006, 3 (1) : 219-235. doi: 10.3934/mbe.2006.3.219

[3]

Burcu Adivar, Ebru Selin Selen. Compartmental disease transmission models for smallpox. Conference Publications, 2011, 2011 (Special) : 13-21. doi: 10.3934/proc.2011.2011.13

[4]

Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111

[5]

Ionel S. Ciuperca, Matthieu Dumont, Abdelkader Lakmeche, Pauline Mazzocco, Laurent Pujo-Menjouet, Human Rezaei, Léon M. Tine. Alzheimer's disease and prion: An in vitro mathematical model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5225-5260. doi: 10.3934/dcdsb.2019057

[6]

Tak Kuen Siu, Howell Tong, Hailiang Yang. Option pricing under threshold autoregressive models by threshold Esscher transform. Journal of Industrial & Management Optimization, 2006, 2 (2) : 177-197. doi: 10.3934/jimo.2006.2.177

[7]

Ram P. Sigdel, C. Connell McCluskey. Disease dynamics for the hometown of migrant workers. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1175-1180. doi: 10.3934/mbe.2014.11.1175

[8]

Junling Ma, Zhien Ma. Epidemic threshold conditions for seasonally forced SEIR models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 161-172. doi: 10.3934/mbe.2006.3.161

[9]

Aditya S. Khanna, Dobromir T. Dimitrov, Steven M. Goodreau. What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1065-1090. doi: 10.3934/mbe.2014.11.1065

[10]

Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217

[11]

Zhenguo Bai, Yicang Zhou. Threshold dynamics of a bacillary dysentery model with seasonal fluctuation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 1-14. doi: 10.3934/dcdsb.2011.15.1

[12]

Jinhuo Luo, Jin Wang, Hao Wang. Seasonal forcing and exponential threshold incidence in cholera dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2261-2290. doi: 10.3934/dcdsb.2017095

[13]

Peter A. Braza. Predator-Prey Dynamics with Disease in the Prey. Mathematical Biosciences & Engineering, 2005, 2 (4) : 703-717. doi: 10.3934/mbe.2005.2.703

[14]

Yanyu Xiao, Xingfu Zou. On latencies in malaria infections and their impact on the disease dynamics. Mathematical Biosciences & Engineering, 2013, 10 (2) : 463-481. doi: 10.3934/mbe.2013.10.463

[15]

Avner Friedman. A hierarchy of cancer models and their mathematical challenges. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 147-159. doi: 10.3934/dcdsb.2004.4.147

[16]

Alain Miranville. Some mathematical models in phase transition. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 271-306. doi: 10.3934/dcdss.2014.7.271

[17]

Rolf Ryham, Chun Liu, Ludmil Zikatanov. Mathematical models for the deformation of electrolyte droplets. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 649-661. doi: 10.3934/dcdsb.2007.8.649

[18]

Dong-Mei Zhu, Wai-Ki Ching, Robert J. Elliott, Tak-Kuen Siu, Lianmin Zhang. Hidden Markov models with threshold effects and their applications to oil price forecasting. Journal of Industrial & Management Optimization, 2017, 13 (2) : 757-773. doi: 10.3934/jimo.2016045

[19]

Mary P. Hebert, Linda J. S. Allen. Disease outbreaks in plant-vector-virus models with vector aggregation and dispersal. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2169-2191. doi: 10.3934/dcdsb.2016042

[20]

Horst R. Thieme. Distributed susceptibility: A challenge to persistence theory in infectious disease models. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 865-882. doi: 10.3934/dcdsb.2009.12.865

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]