# American Institute of Mathematical Sciences

2016, 13(4): 723-739. doi: 10.3934/mbe.2016016

## Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate

 1 Mathematics and Science College, Shanghai Normal University, Shanghai, 200234, China 2 Mathematics and Science College, Shanghai Normal University, Shanghai 200234

Received  October 2015 Revised  February 2016 Published  May 2016

In this paper, we develop and analyze an SIS epidemic model with a general nonlinear incidence rate, as well as degree-dependent birth and natural death, on heterogeneous networks. We analytically derive the epidemic threshold $R_0$ which completely governs the disease dynamics: when $R_0<1$, the disease-free equilibrium is globally asymptotically stable, i.e., the disease will die out; when $R_0>1$, the disease is permanent. It is interesting that the threshold value $R_0$ bears no relation to the functional form of the nonlinear incidence rate and degree-dependent birth. Furthermore, by applying an iteration scheme and the theory of cooperative system respectively, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. Our results improve and generalize some known results. To illustrate the theoretical results, the corresponding numerical simulations are also given.
Citation: Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016
##### References:
 [1] L.-M. Cai and X.-Z. Li, Analysis of a SEIV epidemic model with a nonlinear incidence rate,, Appl. Math. Modelling, 33 (2009), 2919. doi: 10.1016/j.apm.2008.01.005. [2] X. Chu, Z. Zhang, J. Guan and S. Zhou, Epidemic spreading with nonlinear infectivity in weighted scale-free networks,, Physica A, 390 (2011), 471. doi: 10.1016/j.physa.2010.09.038. [3] X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization,, Phys. Rev. E, 77 (2008). doi: 10.1103/PhysRevE.77.036113. [4] H. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599. doi: 10.1137/S0036144500371907. [5] S. Huang, Dynamic analysis of an SEIRS model with nonlinear infectivity on complex networks,, Int. J. Biomath., 9 (2016). doi: 10.1142/S1793524516500091. [6] J. Jiang, On the global stability of cooperative systems,, B. Lond. Math. Soc., 26 (1994), 455. doi: 10.1112/blms/26.5.455. [7] Z. Jin, G. Sun and H. Zhu, Epidemic models for complex networks with demographics,, Math. Biosci. Eng., 11 (2014), 1295. doi: 10.3934/mbe.2014.11.1295. [8] H. Kang and X. Fu, Epidemic spreading and global stability of an SIS model with an infective vector on complex networks,, Commun. Nonlinear Sci. Numer. Simul., 27 (2015), 30. doi: 10.1016/j.cnsns.2015.02.018. [9] A. Lahrouz, L. Omari, D. Kiouach and A. Belmaâtic, Complete global stability for an SIRS epidemic model with generalized nonlinear incidence and vaccination,, Appl. Math. Comput., 218 (2012), 6519. doi: 10.1016/j.amc.2011.12.024. [10] A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population,, Math. Biosci., 28 (1976), 221. doi: 10.1016/0025-5564(76)90125-5. [11] C.-H. Li, Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate,, Physica A, 427 (2015), 234. doi: 10.1016/j.physa.2015.02.023. [12] J. Liu, Y. Tang and Z. R. Yang, The spread of disease with birth and death on networks,, J. Stat. Mech., 2004 (2004). doi: 10.1088/1742-5468/2004/08/P08008. [13] M. Liu and Y. Chen, An SIRS model with differential susceptibility and infectivity on uncorrelated networks,, Math. Biosci. Eng., 12 (2015), 415. doi: 10.3934/mbe.2015.12.415. [14] M. Liu and J. Ruan, Modelling of epidemics with a generalized nonlinear incidence on complex networks,, Complex Sciences, 5 (2009), 2118. doi: 10.1007/978-3-642-02469-6_88. [15] Z. Ma, Y. Zhou, W. Wang and Z. Jin, Mathematical Models and Dynamics of Infectious Diseases,, China sci. press, (2004). [16] R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.030902. [17] R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks,, Phys. Rev. E, 63 (2001). doi: 10.1103/PhysRevE.63.066117. [18] S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate,, J. Differ. Equations, 188 (2003), 135. doi: 10.1016/S0022-0396(02)00089-X. [19] J. Sanz, L. Floría and Y. Moreno, Spreading of persistent infections in heterogeneous populations,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.056108. [20] L. Wang and G.-Z. Dai, Global stability of virus spreading in complex heterogeneous networks,, SIAM J. Appl. Math., 68 (2008), 1495. doi: 10.1137/070694582. [21] R. Yang, B. Wang, J. Ren, W. Bai, Z. Shi, W. Wang and T. Zhou, Epidemic spreading on heterogeneous networks with identical infectivity,, Phys. Lett. A, 364 (2007), 189. doi: 10.1016/j.physleta.2006.12.021. [22] H. Zhang and X. Fu, Spreading of epidemics on scale-free networks with nonlinear infectivity,, Nonlinear Anal. Theory Methods Appl., 70 (2009), 3273. doi: 10.1016/j.na.2008.04.031. [23] J. Zhang and J. Sun, Stability analysis of an SIS epidemic model with feedback mechanism on networks,, Physica A, 394 (2014), 24. doi: 10.1016/j.physa.2013.09.058. [24] J. Zhang and J. Sun, Analysis of epidemic spreading with feedback mechanism in weighted networks,, Int. J. Biomath., 8 (2015). doi: 10.1142/S1793524515500072. [25] J. Zhang and Z. Jin, The analysis of an epidemic model on networks,, Appl. Math. Comput., 217 (2011), 7053. doi: 10.1016/j.amc.2010.09.063. [26] G. Zhu, X. Fu and G. Chen, Global attractivity of a network-based epidemic SIS model with nonlinear infectivity,, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2588. doi: 10.1016/j.cnsns.2011.08.039. [27] G. Zhu, X. Fu and G. Chen, Spreading dynamics and global stability of a generalized epidemic model on complex heterogeneous networks,, Appl. Math. Modell., 36 (2012), 5808. doi: 10.1016/j.apm.2012.01.023.

show all references

##### References:
 [1] L.-M. Cai and X.-Z. Li, Analysis of a SEIV epidemic model with a nonlinear incidence rate,, Appl. Math. Modelling, 33 (2009), 2919. doi: 10.1016/j.apm.2008.01.005. [2] X. Chu, Z. Zhang, J. Guan and S. Zhou, Epidemic spreading with nonlinear infectivity in weighted scale-free networks,, Physica A, 390 (2011), 471. doi: 10.1016/j.physa.2010.09.038. [3] X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization,, Phys. Rev. E, 77 (2008). doi: 10.1103/PhysRevE.77.036113. [4] H. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599. doi: 10.1137/S0036144500371907. [5] S. Huang, Dynamic analysis of an SEIRS model with nonlinear infectivity on complex networks,, Int. J. Biomath., 9 (2016). doi: 10.1142/S1793524516500091. [6] J. Jiang, On the global stability of cooperative systems,, B. Lond. Math. Soc., 26 (1994), 455. doi: 10.1112/blms/26.5.455. [7] Z. Jin, G. Sun and H. Zhu, Epidemic models for complex networks with demographics,, Math. Biosci. Eng., 11 (2014), 1295. doi: 10.3934/mbe.2014.11.1295. [8] H. Kang and X. Fu, Epidemic spreading and global stability of an SIS model with an infective vector on complex networks,, Commun. Nonlinear Sci. Numer. Simul., 27 (2015), 30. doi: 10.1016/j.cnsns.2015.02.018. [9] A. Lahrouz, L. Omari, D. Kiouach and A. Belmaâtic, Complete global stability for an SIRS epidemic model with generalized nonlinear incidence and vaccination,, Appl. Math. Comput., 218 (2012), 6519. doi: 10.1016/j.amc.2011.12.024. [10] A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population,, Math. Biosci., 28 (1976), 221. doi: 10.1016/0025-5564(76)90125-5. [11] C.-H. Li, Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate,, Physica A, 427 (2015), 234. doi: 10.1016/j.physa.2015.02.023. [12] J. Liu, Y. Tang and Z. R. Yang, The spread of disease with birth and death on networks,, J. Stat. Mech., 2004 (2004). doi: 10.1088/1742-5468/2004/08/P08008. [13] M. Liu and Y. Chen, An SIRS model with differential susceptibility and infectivity on uncorrelated networks,, Math. Biosci. Eng., 12 (2015), 415. doi: 10.3934/mbe.2015.12.415. [14] M. Liu and J. Ruan, Modelling of epidemics with a generalized nonlinear incidence on complex networks,, Complex Sciences, 5 (2009), 2118. doi: 10.1007/978-3-642-02469-6_88. [15] Z. Ma, Y. Zhou, W. Wang and Z. Jin, Mathematical Models and Dynamics of Infectious Diseases,, China sci. press, (2004). [16] R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.030902. [17] R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks,, Phys. Rev. E, 63 (2001). doi: 10.1103/PhysRevE.63.066117. [18] S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate,, J. Differ. Equations, 188 (2003), 135. doi: 10.1016/S0022-0396(02)00089-X. [19] J. Sanz, L. Floría and Y. Moreno, Spreading of persistent infections in heterogeneous populations,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.056108. [20] L. Wang and G.-Z. Dai, Global stability of virus spreading in complex heterogeneous networks,, SIAM J. Appl. Math., 68 (2008), 1495. doi: 10.1137/070694582. [21] R. Yang, B. Wang, J. Ren, W. Bai, Z. Shi, W. Wang and T. Zhou, Epidemic spreading on heterogeneous networks with identical infectivity,, Phys. Lett. A, 364 (2007), 189. doi: 10.1016/j.physleta.2006.12.021. [22] H. Zhang and X. Fu, Spreading of epidemics on scale-free networks with nonlinear infectivity,, Nonlinear Anal. Theory Methods Appl., 70 (2009), 3273. doi: 10.1016/j.na.2008.04.031. [23] J. Zhang and J. Sun, Stability analysis of an SIS epidemic model with feedback mechanism on networks,, Physica A, 394 (2014), 24. doi: 10.1016/j.physa.2013.09.058. [24] J. Zhang and J. Sun, Analysis of epidemic spreading with feedback mechanism in weighted networks,, Int. J. Biomath., 8 (2015). doi: 10.1142/S1793524515500072. [25] J. Zhang and Z. Jin, The analysis of an epidemic model on networks,, Appl. Math. Comput., 217 (2011), 7053. doi: 10.1016/j.amc.2010.09.063. [26] G. Zhu, X. Fu and G. Chen, Global attractivity of a network-based epidemic SIS model with nonlinear infectivity,, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2588. doi: 10.1016/j.cnsns.2011.08.039. [27] G. Zhu, X. Fu and G. Chen, Spreading dynamics and global stability of a generalized epidemic model on complex heterogeneous networks,, Appl. Math. Modell., 36 (2012), 5808. doi: 10.1016/j.apm.2012.01.023.
 [1] C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837 [2] Chengxia Lei, Fujun Li, Jiang Liu. Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4499-4517. doi: 10.3934/dcdsb.2018173 [3] Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057 [4] Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61 [5] Shuping Li, Zhen Jin. Impacts of cluster on network topology structure and epidemic spreading. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3749-3770. doi: 10.3934/dcdsb.2017187 [6] Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 93-112. doi: 10.3934/dcdsb.2011.15.93 [7] Jianquan Li, Yicang Zhou, Jianhong Wu, Zhien Ma. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 161-173. doi: 10.3934/dcdsb.2007.8.161 [8] Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with generalized nonlinear incidence and vaccination age. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 977-996. doi: 10.3934/dcdsb.2016.21.977 [9] Attila Dénes, Gergely Röst. Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1101-1117. doi: 10.3934/dcdsb.2016.21.1101 [10] Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133 [11] Pierre Gabriel. Global stability for the prion equation with general incidence. Mathematical Biosciences & Engineering, 2015, 12 (4) : 789-801. doi: 10.3934/mbe.2015.12.789 [12] Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727 [13] Jing Hui, Lansun Chen. Impulsive vaccination of sir epidemic models with nonlinear incidence rates. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 595-605. doi: 10.3934/dcdsb.2004.4.595 [14] Chengzhi Li, Jianquan Li, Zhien Ma. Codimension 3 B-T bifurcations in an epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1107-1116. doi: 10.3934/dcdsb.2015.20.1107 [15] Yoichi Enatsu, Yukihiko Nakata. Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences & Engineering, 2014, 11 (4) : 785-805. doi: 10.3934/mbe.2014.11.785 [16] Qingming Gou, Wendi Wang. Global stability of two epidemic models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 333-345. doi: 10.3934/dcdsb.2007.8.333 [17] Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57 [18] Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119 [19] Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347 [20] Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

2018 Impact Factor: 1.313