2016, 13(5): 1059-1075. doi: 10.3934/mbe.2016030

Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy

1. 

Instituto Politecnico Nacional, CITEDI, Avenida IPN N 1310, Nueva Tijuana, Tijuana, BC 22435, Mexico

2. 

Department of Computer Science and Mathematics, Ariel University Center of Samaria, Ariel, 40700

Received  October 2015 Revised  March 2016 Published  October 2016

Understanding the global interaction dynamics between tumor and the immune system plays a key role in the advancement of cancer therapy. Bunimovich-Mendrazitsky et al. (2015) developed a mathematical model for the study of the immune system response to combined therapy for bladder cancer with Bacillus Calmette-Guérin (BCG) and interleukin-2 (IL-2) . We utilized a mathematical approach for bladder cancer treatment model for derivation of ultimate upper and lower bounds and proving dissipativity property in the sense of Levinson. Furthermore, tumor clearance conditions for BCG treatment of bladder cancer are presented. Our method is based on localization of compact invariant sets and may be exploited for a prediction of the cells populations dynamics involved into the model.
Citation: K. E. Starkov, Svetlana Bunimovich-Mendrazitsky. Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1059-1075. doi: 10.3934/mbe.2016030
References:
[1]

Bull. Math. Biol., 69 (2007), 1847-1870. doi: 10.1007/s11538-007-9195-z.  Google Scholar

[2]

Bull. Math. Biol., 70 (2008), 2055-2076. doi: 10.1007/s11538-008-9344-z.  Google Scholar

[3]

Math. Med. Biol., 33 (2016), 159-188. doi: 10.1093/imammb/dqv007.  Google Scholar

[4]

Math. Biosci. Eng., 8 (2011), 529-547. doi: 10.3934/mbe.2011.8.529.  Google Scholar

[5]

Teubner Wiesbaden, 2005. doi: 10.1007/978-3-322-80055-8.  Google Scholar

[6]

J. Math. Biol., 37 (1998), 235-252. Google Scholar

[7]

Differ. Equ., 41 (2005), 1669-1676. doi: 10.1007/s10625-006-0003-6.  Google Scholar

[8]

Phys. Lett. A, 353 (2006), 383-388. doi: 10.1016/j.physleta.2005.12.104.  Google Scholar

[9]

Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1159-1165. doi: 10.1016/j.cnsns.2009.05.068.  Google Scholar

[10]

J. Urol., 116 (1976), 180-183. Google Scholar

[11]

IMA J. Appl. Math., 15 (1998), 165-185. Google Scholar

[12]

Phys. Lett. A, 375 (2011), 3184-3187. doi: 10.1016/j.physleta.2011.06.064.  Google Scholar

[13]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 1037-1042. doi: 10.1142/S0218127409023457.  Google Scholar

[14]

Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2565-2570. doi: 10.1016/j.cnsns.2008.08.005.  Google Scholar

[15]

Nonlinear Anal. Real World Appl., 14 (2013), 1425-1433. doi: 10.1016/j.nonrwa.2012.10.006.  Google Scholar

[16]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350020, 9pp. doi: 10.1142/S021812741350020X.  Google Scholar

[17]

Math. Methods Appl. Sci, 37 (2014), 2854-2863. doi: 10.1002/mma.3023.  Google Scholar

[18]

Bull. Math. Biol., 63 (2001), 731-768. doi: 10.1006/bulm.2001.0245.  Google Scholar

show all references

References:
[1]

Bull. Math. Biol., 69 (2007), 1847-1870. doi: 10.1007/s11538-007-9195-z.  Google Scholar

[2]

Bull. Math. Biol., 70 (2008), 2055-2076. doi: 10.1007/s11538-008-9344-z.  Google Scholar

[3]

Math. Med. Biol., 33 (2016), 159-188. doi: 10.1093/imammb/dqv007.  Google Scholar

[4]

Math. Biosci. Eng., 8 (2011), 529-547. doi: 10.3934/mbe.2011.8.529.  Google Scholar

[5]

Teubner Wiesbaden, 2005. doi: 10.1007/978-3-322-80055-8.  Google Scholar

[6]

J. Math. Biol., 37 (1998), 235-252. Google Scholar

[7]

Differ. Equ., 41 (2005), 1669-1676. doi: 10.1007/s10625-006-0003-6.  Google Scholar

[8]

Phys. Lett. A, 353 (2006), 383-388. doi: 10.1016/j.physleta.2005.12.104.  Google Scholar

[9]

Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1159-1165. doi: 10.1016/j.cnsns.2009.05.068.  Google Scholar

[10]

J. Urol., 116 (1976), 180-183. Google Scholar

[11]

IMA J. Appl. Math., 15 (1998), 165-185. Google Scholar

[12]

Phys. Lett. A, 375 (2011), 3184-3187. doi: 10.1016/j.physleta.2011.06.064.  Google Scholar

[13]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 1037-1042. doi: 10.1142/S0218127409023457.  Google Scholar

[14]

Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2565-2570. doi: 10.1016/j.cnsns.2008.08.005.  Google Scholar

[15]

Nonlinear Anal. Real World Appl., 14 (2013), 1425-1433. doi: 10.1016/j.nonrwa.2012.10.006.  Google Scholar

[16]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350020, 9pp. doi: 10.1142/S021812741350020X.  Google Scholar

[17]

Math. Methods Appl. Sci, 37 (2014), 2854-2863. doi: 10.1002/mma.3023.  Google Scholar

[18]

Bull. Math. Biol., 63 (2001), 731-768. doi: 10.1006/bulm.2001.0245.  Google Scholar

[1]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378

[2]

Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565

[3]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[4]

Jun He, Guangjun Xu, Yanmin Liu. New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021058

[5]

Chris Guiver, Nathan Poppelreiter, Richard Rebarber, Brigitte Tenhumberg, Stuart Townley. Dynamic observers for unknown populations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3279-3302. doi: 10.3934/dcdsb.2020232

[6]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[7]

Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010

[8]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[9]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[10]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[11]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[12]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[13]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[14]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[15]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[16]

Prabhu Manyem. A note on optimization modelling of piecewise linear delay costing in the airline industry. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1809-1823. doi: 10.3934/jimo.2020047

[17]

José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005

[18]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[19]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[20]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (8)

[Back to Top]