-
Previous Article
A two-sex matrix population model to represent harem structure
- MBE Home
- This Issue
-
Next Article
Development of a computational model of glucose toxicity in the progression of diabetes mellitus
Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy
1. | Instituto Politecnico Nacional, CITEDI, Avenida IPN N 1310, Nueva Tijuana, Tijuana, BC 22435, Mexico |
2. | Department of Computer Science and Mathematics, Ariel University Center of Samaria, Ariel, 40700 |
References:
[1] |
Bull. Math. Biol., 69 (2007), 1847-1870.
doi: 10.1007/s11538-007-9195-z. |
[2] |
Bull. Math. Biol., 70 (2008), 2055-2076.
doi: 10.1007/s11538-008-9344-z. |
[3] |
Math. Med. Biol., 33 (2016), 159-188.
doi: 10.1093/imammb/dqv007. |
[4] |
Math. Biosci. Eng., 8 (2011), 529-547.
doi: 10.3934/mbe.2011.8.529. |
[5] |
Teubner Wiesbaden, 2005.
doi: 10.1007/978-3-322-80055-8. |
[6] |
J. Math. Biol., 37 (1998), 235-252. Google Scholar |
[7] |
Differ. Equ., 41 (2005), 1669-1676.
doi: 10.1007/s10625-006-0003-6. |
[8] |
Phys. Lett. A, 353 (2006), 383-388.
doi: 10.1016/j.physleta.2005.12.104. |
[9] |
Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1159-1165.
doi: 10.1016/j.cnsns.2009.05.068. |
[10] |
J. Urol., 116 (1976), 180-183. Google Scholar |
[11] |
IMA J. Appl. Math., 15 (1998), 165-185. Google Scholar |
[12] |
Phys. Lett. A, 375 (2011), 3184-3187.
doi: 10.1016/j.physleta.2011.06.064. |
[13] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 1037-1042.
doi: 10.1142/S0218127409023457. |
[14] |
Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2565-2570.
doi: 10.1016/j.cnsns.2008.08.005. |
[15] |
Nonlinear Anal. Real World Appl., 14 (2013), 1425-1433.
doi: 10.1016/j.nonrwa.2012.10.006. |
[16] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350020, 9pp.
doi: 10.1142/S021812741350020X. |
[17] |
Math. Methods Appl. Sci, 37 (2014), 2854-2863.
doi: 10.1002/mma.3023. |
[18] |
Bull. Math. Biol., 63 (2001), 731-768.
doi: 10.1006/bulm.2001.0245. |
show all references
References:
[1] |
Bull. Math. Biol., 69 (2007), 1847-1870.
doi: 10.1007/s11538-007-9195-z. |
[2] |
Bull. Math. Biol., 70 (2008), 2055-2076.
doi: 10.1007/s11538-008-9344-z. |
[3] |
Math. Med. Biol., 33 (2016), 159-188.
doi: 10.1093/imammb/dqv007. |
[4] |
Math. Biosci. Eng., 8 (2011), 529-547.
doi: 10.3934/mbe.2011.8.529. |
[5] |
Teubner Wiesbaden, 2005.
doi: 10.1007/978-3-322-80055-8. |
[6] |
J. Math. Biol., 37 (1998), 235-252. Google Scholar |
[7] |
Differ. Equ., 41 (2005), 1669-1676.
doi: 10.1007/s10625-006-0003-6. |
[8] |
Phys. Lett. A, 353 (2006), 383-388.
doi: 10.1016/j.physleta.2005.12.104. |
[9] |
Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1159-1165.
doi: 10.1016/j.cnsns.2009.05.068. |
[10] |
J. Urol., 116 (1976), 180-183. Google Scholar |
[11] |
IMA J. Appl. Math., 15 (1998), 165-185. Google Scholar |
[12] |
Phys. Lett. A, 375 (2011), 3184-3187.
doi: 10.1016/j.physleta.2011.06.064. |
[13] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 1037-1042.
doi: 10.1142/S0218127409023457. |
[14] |
Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2565-2570.
doi: 10.1016/j.cnsns.2008.08.005. |
[15] |
Nonlinear Anal. Real World Appl., 14 (2013), 1425-1433.
doi: 10.1016/j.nonrwa.2012.10.006. |
[16] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350020, 9pp.
doi: 10.1142/S021812741350020X. |
[17] |
Math. Methods Appl. Sci, 37 (2014), 2854-2863.
doi: 10.1002/mma.3023. |
[18] |
Bull. Math. Biol., 63 (2001), 731-768.
doi: 10.1006/bulm.2001.0245. |
[1] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378 |
[2] |
Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565 |
[3] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408 |
[4] |
Jun He, Guangjun Xu, Yanmin Liu. New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021058 |
[5] |
Chris Guiver, Nathan Poppelreiter, Richard Rebarber, Brigitte Tenhumberg, Stuart Townley. Dynamic observers for unknown populations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3279-3302. doi: 10.3934/dcdsb.2020232 |
[6] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[7] |
Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010 |
[8] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[9] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021051 |
[10] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[11] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[12] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[13] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[14] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021053 |
[15] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[16] |
Prabhu Manyem. A note on optimization modelling of piecewise linear delay costing in the airline industry. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1809-1823. doi: 10.3934/jimo.2020047 |
[17] |
José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005 |
[18] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[19] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073 |
[20] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]