# American Institute of Mathematical Sciences

• Previous Article
Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer
• MBE Home
• This Issue
• Next Article
Effect of the epidemiological heterogeneity on the outbreak outcomes
June  2017, 14(3): 755-775. doi: 10.3934/mbe.2017042

## Effects of selection and mutation on epidemiology of X-linked genetic diseases

 1 Dipartimento di Ingegneria, Università degli Studi del Sannio, Benevento (Italy), Piazza Roma, 21, Benevento 82022, Italy 2 School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran 3 School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana, USA

* Corresponding author: fverrilli@unisannio.it

Received  March 02, 2016 Accepted  November 11, 2016 Published  December 2016

The epidemiology of X-linked recessive diseases, a class of genetic disorders, is modeled with a discrete-time, structured, non linear mathematical system. The model accounts for both de novo mutations (i.e., affected sibling born to unaffected parents) and selection (i.e., distinct fitness rates depending on individual's health conditions). Assuming that the population is constant over generations and relying on Lyapunov theory we found the domain of attraction of model's equilibrium point and studied the convergence properties of the degenerate equilibrium where only affected individuals survive. Examples of applications of the proposed model to two among the most common X-linked recessive diseases (namely the red and green color blindness and the Hemophilia A) are described.

Citation: Francesca Verrilli, Hamed Kebriaei, Luigi Glielmo, Martin Corless, Carmen Del Vecchio. Effects of selection and mutation on epidemiology of X-linked genetic diseases. Mathematical Biosciences & Engineering, 2017, 14 (3) : 755-775. doi: 10.3934/mbe.2017042
##### References:

show all references

##### References:
Inheritance pattern of X-linked recessive disease
Region of attraction corresponding to wi parameters in Table 3
Region of attraction corresponding to wi parameters in Table 3 using the two Lyapunov functions.
Region of attraction of xB = (72.5, 26.5, 68.9) and system's parameters as in Section 5.2.
Trajectories with different initial conditions and wi in (27)
Trajectories converging to xB
Static sensitivity analysis with respect to wi
X-linked recessive inheritance probabilities for sons
 PARENTS SONS father mother healthy$X^A Y$ affected$X^a Y$ $X^A Y$ $X^A X^A$ $1-\gamma$ $\gamma$ $X^A Y$ $X^A X^a$ $\frac{1}{2}(1-\gamma)$ $\frac{1}{2}(1+\gamma)$ $X^A Y$ $X^a X^a$ $0$ $1$ $X^a Y$ $X^A X^A$ $1-\gamma$ $\gamma$ $X^a Y$ $X^A X^a$ $\frac{1}{2}(1-\gamma)$ $\frac{1}{2}(1+\gamma)$ $X^a Y$ $X^a X^a$ $0$ $1$
 PARENTS SONS father mother healthy$X^A Y$ affected$X^a Y$ $X^A Y$ $X^A X^A$ $1-\gamma$ $\gamma$ $X^A Y$ $X^A X^a$ $\frac{1}{2}(1-\gamma)$ $\frac{1}{2}(1+\gamma)$ $X^A Y$ $X^a X^a$ $0$ $1$ $X^a Y$ $X^A X^A$ $1-\gamma$ $\gamma$ $X^a Y$ $X^A X^a$ $\frac{1}{2}(1-\gamma)$ $\frac{1}{2}(1+\gamma)$ $X^a Y$ $X^a X^a$ $0$ $1$
X-linked recessive inheritance probabilities for daughters
 PARENTS DAUGHTERS father mother healthy$X^A X^A$ carrier$X^A X^a$ affected$X^a X^a$ $X^A Y$ $X^A X^A$ $(1-\gamma)^2$ $2\gamma(1-\gamma)$ $\gamma^2$ $X^A Y$ $X^A X^a$ $\frac{1}{2}(1-\gamma)^2$ $\frac{1}{2}(1+\gamma-2\gamma^2)$ $\frac{1}{2}\gamma(1+\gamma)$ $X^A Y$ $X^a X^a$ $0$ $1-\gamma$ $\gamma$ $X^a Y$ $X^A X^A$ $0$ $1-\gamma$ $\gamma$ $X^a Y$ $X^A X^a$ $0$ $\frac{1}{2}(1-\gamma)$ $\frac{1}{2}(1+\gamma)$ $X^a Y$ $X^a X^a$ $0$ $0$ $1$
 PARENTS DAUGHTERS father mother healthy$X^A X^A$ carrier$X^A X^a$ affected$X^a X^a$ $X^A Y$ $X^A X^A$ $(1-\gamma)^2$ $2\gamma(1-\gamma)$ $\gamma^2$ $X^A Y$ $X^A X^a$ $\frac{1}{2}(1-\gamma)^2$ $\frac{1}{2}(1+\gamma-2\gamma^2)$ $\frac{1}{2}\gamma(1+\gamma)$ $X^A Y$ $X^a X^a$ $0$ $1-\gamma$ $\gamma$ $X^a Y$ $X^A X^A$ $0$ $1-\gamma$ $\gamma$ $X^a Y$ $X^A X^a$ $0$ $\frac{1}{2}(1-\gamma)$ $\frac{1}{2}(1+\gamma)$ $X^a Y$ $X^a X^a$ $0$ $0$ $1$
Parameters values
 N $\gamma$ $w_{13}$ $w_{14}$ $w_{15}$ $w_{23}$ $w_{24}$ $r$ scenario 1 $150$ $10^{-4}$ 0.5 0.45 0.1 1 0.9 11232 scenario 2 150 $10^{-4}$ 0.5 1 0.5 0.5 1 8284 scenario 3 150 $10^{-4}$ 0.63 1.4 0.14 0.7 1.5 2121
 N $\gamma$ $w_{13}$ $w_{14}$ $w_{15}$ $w_{23}$ $w_{24}$ $r$ scenario 1 $150$ $10^{-4}$ 0.5 0.45 0.1 1 0.9 11232 scenario 2 150 $10^{-4}$ 0.5 1 0.5 0.5 1 8284 scenario 3 150 $10^{-4}$ 0.63 1.4 0.14 0.7 1.5 2121
Parameters values for Lyapunov function in (14)
 $\alpha^*$ $\beta^*$ $\mu^*$ $\underline{x}_1$ scenario 1 0.0917 0.9999 0.9072 150 scenario 2 0.2486 0.3729 0.4953 150 scenario 3 0.0247 0.1359 0.1766 63.6
 $\alpha^*$ $\beta^*$ $\mu^*$ $\underline{x}_1$ scenario 1 0.0917 0.9999 0.9072 150 scenario 2 0.2486 0.3729 0.4953 150 scenario 3 0.0247 0.1359 0.1766 63.6
 [1] Andreas Widder. On the usefulness of set-membership estimation in the epidemiology of infectious diseases. Mathematical Biosciences & Engineering, 2018, 15 (1) : 141-152. doi: 10.3934/mbe.2018006 [2] Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 [3] Sebastián Buedo-Fernández. Global attraction in a system of delay differential equations via compact and convex sets. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3171-3181. doi: 10.3934/dcdsb.2020056 [4] E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 323-351. doi: 10.3934/dcdsb.2014.19.323 [5] Qi Yang, Lei Wang, Enmin Feng, Hongchao Yin, Zhilong Xiu. Identification and robustness analysis of nonlinear hybrid dynamical system of genetic regulation in continuous culture. Journal of Industrial & Management Optimization, 2020, 16 (2) : 579-599. doi: 10.3934/jimo.2018168 [6] Nicolás Carreño. Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain. Mathematical Control & Related Fields, 2012, 2 (4) : 361-382. doi: 10.3934/mcrf.2012.2.361 [7] Péter Koltai. A stochastic approach for computing the domain of attraction without trajectory simulation. Conference Publications, 2011, 2011 (Special) : 854-863. doi: 10.3934/proc.2011.2011.854 [8] Hongbin Guo, Michael Yi Li. Global dynamics of a staged progression model for infectious diseases. Mathematical Biosciences & Engineering, 2006, 3 (3) : 513-525. doi: 10.3934/mbe.2006.3.513 [9] Jean-Baptiste Burie, Ramsès Djidjou-Demasse, Arnaud Ducrot. Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2223-2243. doi: 10.3934/dcdsb.2019225 [10] Jesse Berwald, Marian Gidea. Critical transitions in a model of a genetic regulatory system. Mathematical Biosciences & Engineering, 2014, 11 (4) : 723-740. doi: 10.3934/mbe.2014.11.723 [11] Jin Zhang, Peter E. Kloeden, Meihua Yang, Chengkui Zhong. Global exponential κ-dissipative semigroups and exponential attraction. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3487-3502. doi: 10.3934/dcds.2017148 [12] B. Coll, A. Gasull, R. Prohens. On a criterium of global attraction for discrete dynamical systems. Communications on Pure & Applied Analysis, 2006, 5 (3) : 537-550. doi: 10.3934/cpaa.2006.5.537 [13] Eduardo Liz. Local stability implies global stability in some one-dimensional discrete single-species models. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 191-199. doi: 10.3934/dcdsb.2007.7.191 [14] Xin Liu. Compressible viscous flows in a symmetric domain with complete slip boundary: The nonlinear stability of uniformly rotating states with small angular velocities. Communications on Pure & Applied Analysis, 2019, 18 (2) : 751-794. doi: 10.3934/cpaa.2019037 [15] Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451 [16] Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353 [17] Fágner D. Araruna, Flank D. M. Bezerra, Milton L. Oliveira. Rate of attraction for a semilinear thermoelastic system with variable coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3211-3226. doi: 10.3934/dcdsb.2018316 [18] Michela Eleuteri, Paolo Marcellini, Elvira Mascolo. Local Lipschitz continuity of minimizers with mild assumptions on the $x$-dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 251-265. doi: 10.3934/dcdss.2019018 [19] Peter Dormayer, Anatoli F. Ivanov. Stability of symmetric periodic solutions with small amplitude of $\dot x(t)=\alpha f(x(t), x(t-1))$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 61-82. doi: 10.3934/dcds.1999.5.61 [20] Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu. Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 503-523. doi: 10.3934/mbe.2015.12.503

2018 Impact Factor: 1.313