# American Institute of Mathematical Sciences

October  2017, 14(5&6): 1407-1424. doi: 10.3934/mbe.2017073

## Dynamics of epidemic models with asymptomatic infection and seasonal succession

 1 School of Mathematical Science, Shanghai Jiao Tong University, Shanghai 200240, China 2 Yangtze Center of Mathematics and Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author

Received  March 11, 2017 Accepted  April 2017 Published  May 2017

In this paper, we consider a compartmental SIRS epidemic model with asymptomatic infection and seasonal succession, which is a periodic discontinuous differential system. The basic reproduction number $\mathcal{R}_0$ is defined and evaluated directly for this model, and uniform persistence of the disease and threshold dynamics are obtained. Specially, global dynamics of the model without seasonal force are studied. It is shown that the model has only a disease-free equilibrium which is globally stable if $\mathcal{R}_0≤ 1$, and as $\mathcal{R}_0>1$ the disease-free equilibrium is unstable and there is an endemic equilibrium, which is globally stable if the recovering rates of asymptomatic infectives and symptomatic infectives are close. These theoretical results provide an intuitive basis for understanding that the asymptomatically infective individuals and the seasonal disease transmission promote the evolution of the epidemic, which allow us to predict the outcomes of control strategies during the course of the epidemic.

Citation: Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu. Dynamics of epidemic models with asymptomatic infection and seasonal succession. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1407-1424. doi: 10.3934/mbe.2017073
##### References:
 [1] M. E. Alexander and S. M. Moghadas, Bifurcation analysis of SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 1794-1816. doi: 10.1137/040604947. Google Scholar [2] R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, New York, 1991.Google Scholar [3] J. Arino, F. Brauer, P. van den Driessche, J. Watmoughd and J. Wu, A model for influenza with vaccination and antiviral treatment, J. Theor. Biol., 253 (2008), 118-130. doi: 10.1016/j.jtbi.2008.02.026. Google Scholar [4] L. Bourouiba, A. Teslya and J. Wu, Highly pathogenic avian influenza outbreak mitigated by seasonal low pathogenic strains: insights from dynamic modeling, J. Theor. Biol., 271 (2011), 181-201. doi: 10.1016/j.jtbi.2010.11.013. Google Scholar [5] F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-3516-1. Google Scholar [6] J. M. Cushing, A juvenile-adult model with periodic vital rates, J. Math. Biol., 53 (2006), 520-539. doi: 10.1007/s00285-006-0382-6. Google Scholar [7] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in themodels for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. doi: 10.1007/BF00178324. Google Scholar [8] K. Dietz, The incidence of infectious diseases under the influence of seasonal fluctuations, Lecture Notes in Biomath, 11 (1976), 1-15, Berlin-Heidelberg-New York: Springer. doi: 10.1007/978-3-642-93048-5_1. Google Scholar [9] D. J. D. Earn, P. Rohani, B. M. Bolker and B. T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667-670. doi: 10.1126/science.287.5453.667. Google Scholar [10] Z. Guo, L. Huang and X. Zou, Impact of discontinuous treatments on disease dynamics in an SIR epidemic model, Math. Biosci. Eng., 9 (2012), 97-110. doi: 10.3934/mbe.2012.9.97. Google Scholar [11] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. doi: 10.1137/S0036144500371907. Google Scholar [12] Y. Hsieh, J. Liu, Y. Tzeng and J. Wu, Impact of visitors and hospital staff on nosocomial transmission and spread to community, J. Theor. Biol., 356 (2014), 20-29. doi: 10.1016/j.jtbi.2014.04.003. Google Scholar [13] W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. London A: Math., 115 (1927), 700-721. Google Scholar [14] I. M. Longini, M. E. Halloran, A. Nizam and Y. Yang, Containing pandemic influenza with antiviral agents, Am. J. Epidemiol., 159 (2004), 623-633. doi: 10.1093/aje/kwh092. Google Scholar [15] R. Olinky, A. Huppert and L. Stone, Seasonal dynamics and thresholds governing recurrent epidemics, J. Math. Biol., 56 (2008), 827-839. doi: 10.1007/s00285-007-0140-4. Google Scholar [16] I. B. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30 (1992), 473-491. doi: 10.1007/BF00160532. Google Scholar [17] H. L. Smith, Multiple stable subharmonics for a periodic epidemic model, J. Math. Biol., 17 (1983), 179-190. doi: 10.1007/BF00305758. Google Scholar [18] H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge Univ. Press, 1995. doi: 10.1017/CBO9780511530043. Google Scholar [19] L. Stone, R. Olinky and A. Huppert, Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533-536. doi: 10.1038/nature05638. Google Scholar [20] Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639. doi: 10.1137/070700966. Google Scholar [21] S. Towers and Z. Feng, Social contact patterns and control strategies for influenza in the elderly, Math. Biosci., 240 (2012), 241-249. doi: 10.1016/j.mbs.2012.07.007. Google Scholar [22] S. Towers, K. Vogt Geisse, Y. Zheng and Z. Feng, Antiviral treatment for pandemic influenza: Assessing potential repercussions using a seasonally forced SIR model, J. Theor. Biol., 289 (2011), 259-268. doi: 10.1016/j.jtbi.2011.08.011. Google Scholar [23] P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar [24] W. Wang and S. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775-793. doi: 10.1016/j.jmaa.2003.11.043. Google Scholar [25] W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699-717. doi: 10.1007/s10884-008-9111-8. Google Scholar [26] D. Xiao, Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting, Discrete Contin. Dynam. Syst. -B, 21 (2016), 699-719. doi: 10.3934/dcdsb.2016.21.699. Google Scholar [27] D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429. doi: 10.1016/j.mbs.2006.09.025. Google Scholar [28] F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516. doi: 10.1016/j.jmaa.2006.01.085. Google Scholar [29] X. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1. Google Scholar

show all references

##### References:
 [1] M. E. Alexander and S. M. Moghadas, Bifurcation analysis of SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 1794-1816. doi: 10.1137/040604947. Google Scholar [2] R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, New York, 1991.Google Scholar [3] J. Arino, F. Brauer, P. van den Driessche, J. Watmoughd and J. Wu, A model for influenza with vaccination and antiviral treatment, J. Theor. Biol., 253 (2008), 118-130. doi: 10.1016/j.jtbi.2008.02.026. Google Scholar [4] L. Bourouiba, A. Teslya and J. Wu, Highly pathogenic avian influenza outbreak mitigated by seasonal low pathogenic strains: insights from dynamic modeling, J. Theor. Biol., 271 (2011), 181-201. doi: 10.1016/j.jtbi.2010.11.013. Google Scholar [5] F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-3516-1. Google Scholar [6] J. M. Cushing, A juvenile-adult model with periodic vital rates, J. Math. Biol., 53 (2006), 520-539. doi: 10.1007/s00285-006-0382-6. Google Scholar [7] O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in themodels for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. doi: 10.1007/BF00178324. Google Scholar [8] K. Dietz, The incidence of infectious diseases under the influence of seasonal fluctuations, Lecture Notes in Biomath, 11 (1976), 1-15, Berlin-Heidelberg-New York: Springer. doi: 10.1007/978-3-642-93048-5_1. Google Scholar [9] D. J. D. Earn, P. Rohani, B. M. Bolker and B. T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667-670. doi: 10.1126/science.287.5453.667. Google Scholar [10] Z. Guo, L. Huang and X. Zou, Impact of discontinuous treatments on disease dynamics in an SIR epidemic model, Math. Biosci. Eng., 9 (2012), 97-110. doi: 10.3934/mbe.2012.9.97. Google Scholar [11] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. doi: 10.1137/S0036144500371907. Google Scholar [12] Y. Hsieh, J. Liu, Y. Tzeng and J. Wu, Impact of visitors and hospital staff on nosocomial transmission and spread to community, J. Theor. Biol., 356 (2014), 20-29. doi: 10.1016/j.jtbi.2014.04.003. Google Scholar [13] W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. London A: Math., 115 (1927), 700-721. Google Scholar [14] I. M. Longini, M. E. Halloran, A. Nizam and Y. Yang, Containing pandemic influenza with antiviral agents, Am. J. Epidemiol., 159 (2004), 623-633. doi: 10.1093/aje/kwh092. Google Scholar [15] R. Olinky, A. Huppert and L. Stone, Seasonal dynamics and thresholds governing recurrent epidemics, J. Math. Biol., 56 (2008), 827-839. doi: 10.1007/s00285-007-0140-4. Google Scholar [16] I. B. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30 (1992), 473-491. doi: 10.1007/BF00160532. Google Scholar [17] H. L. Smith, Multiple stable subharmonics for a periodic epidemic model, J. Math. Biol., 17 (1983), 179-190. doi: 10.1007/BF00305758. Google Scholar [18] H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge Univ. Press, 1995. doi: 10.1017/CBO9780511530043. Google Scholar [19] L. Stone, R. Olinky and A. Huppert, Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533-536. doi: 10.1038/nature05638. Google Scholar [20] Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639. doi: 10.1137/070700966. Google Scholar [21] S. Towers and Z. Feng, Social contact patterns and control strategies for influenza in the elderly, Math. Biosci., 240 (2012), 241-249. doi: 10.1016/j.mbs.2012.07.007. Google Scholar [22] S. Towers, K. Vogt Geisse, Y. Zheng and Z. Feng, Antiviral treatment for pandemic influenza: Assessing potential repercussions using a seasonally forced SIR model, J. Theor. Biol., 289 (2011), 259-268. doi: 10.1016/j.jtbi.2011.08.011. Google Scholar [23] P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar [24] W. Wang and S. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775-793. doi: 10.1016/j.jmaa.2003.11.043. Google Scholar [25] W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699-717. doi: 10.1007/s10884-008-9111-8. Google Scholar [26] D. Xiao, Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting, Discrete Contin. Dynam. Syst. -B, 21 (2016), 699-719. doi: 10.3934/dcdsb.2016.21.699. Google Scholar [27] D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429. doi: 10.1016/j.mbs.2006.09.025. Google Scholar [28] F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516. doi: 10.1016/j.jmaa.2006.01.085. Google Scholar [29] X. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1. Google Scholar
 [1] Zhenguo Bai, Yicang Zhou. Threshold dynamics of a bacillary dysentery model with seasonal fluctuation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 1-14. doi: 10.3934/dcdsb.2011.15.1 [2] Rui Peng, Xiao-Qiang Zhao. The diffusive logistic model with a free boundary and seasonal succession. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2007-2031. doi: 10.3934/dcds.2013.33.2007 [3] Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 [4] Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591 [5] Jinhuo Luo, Jin Wang, Hao Wang. Seasonal forcing and exponential threshold incidence in cholera dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2261-2290. doi: 10.3934/dcdsb.2017095 [6] Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080 [7] Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375 [8] Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191 [9] Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169 [10] Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 [11] Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060 [12] Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 [13] Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483 [14] Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 [15] Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences & Engineering, 2016, 13 (4) : 813-840. doi: 10.3934/mbe.2016019 [16] Lili Liu, Xianning Liu, Jinliang Wang. Threshold dynamics of a delayed multi-group heroin epidemic model in heterogeneous populations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2615-2630. doi: 10.3934/dcdsb.2016064 [17] Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111 [18] Yanan Zhao, Daqing Jiang, Xuerong Mao, Alison Gray. The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1277-1295. doi: 10.3934/dcdsb.2015.20.1277 [19] Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166 [20] Shouying Huang, Jifa Jiang. Epidemic dynamics on complex networks with general infection rate and immune strategies. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2071-2090. doi: 10.3934/dcdsb.2018226

2018 Impact Factor: 1.313