• Previous Article
    Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention
  • MBE Home
  • This Issue
  • Next Article
    Three-level global resource allocation model for HIV control: A hierarchical decision system approach
February  2018, 15(1): 275-298. doi: 10.3934/mbe.2018012

A frailty model for intervention effectiveness against disease transmission when implemented with unobservable heterogeneity

Infectious Diseases Prevention and Control Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada, K1A 0K9

Received  July 02, 2016 Revised  March 2017 Published  May 2017

For an intervention against the spread of communicable diseases, the idealized situation is when individuals fully comply with the intervention and the exposure to the infectious agent is comparable across all individuals. Some level of non-compliance is likely where the intervention is widely implemented. The focus is on a more accurate view of its effects population-wide. A frailty model is applied. Qualitative analysis, in mathematical terms, reveals how large variability in compliance renders the intervention less effective. This finding sharpens our vague, intuitive and empirical notions. An effective reproduction number in the presence of frailty is defined and is shown to be invariant with respect to the time-scale of disease progression. This makes the results in this paper valid for a wide spectrum of acute and chronic infectious diseases. Quantitative analysis by comparing numerical results shows that they are also robust with respect to assumptions on disease progression structure and distributions, such as with or without the latent period and the assumed distributions of latent and infectious periods.

Citation: Ping Yan. A frailty model for intervention effectiveness against disease transmission when implemented with unobservable heterogeneity. Mathematical Biosciences & Engineering, 2018, 15 (1) : 275-298. doi: 10.3934/mbe.2018012
References:
[1] R. Anderson and R. May, Infectious Diseases of Humans, Dynamics and Control, Oxford University Press, 1991. Google Scholar
[2]

O. Diekmann, J. A. P. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton Series in Theoretical and Computational Biology, Princeton University Press, 2013. Google Scholar

[3]

K. Dietz, Some problems in the theory of infectious diseases transmission and control, in Epidemic Models: their Structure and Relation to Data (ed. Denis Mollison), Cambridge University Press, (1995), 3-16.Google Scholar

[4]

M. Greenwood and G. Yule, An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to occurrence of multiple attacks of diseases or of repeated accidents, Journal of the Royal Statistical Society, 83 (1920), 255-279. doi: 10.2307/2341080. Google Scholar

[5]

S. Goldstein, Operational representation of Whittaker's confluent hypergeometric function and Weber's parabolic cylinder function, Proc. London Math. Soc., 2 (1932), 103-125. doi: 10.1112/plms/s2-34.1.103. Google Scholar

[6]

P. Hougaard, Life table methods for heterogenous populations: Distributions describing the heterogeneity, Biometrika, 71 (1984), 75-83. doi: 10.1093/biomet/71.1.75. Google Scholar

[7]

P. Hougaard, Frailty models for survival data, Lifetime Data Analysis, 1 (1995), 255-273. doi: 10.1007/BF00985760. Google Scholar

[8]

E. K. LenziE. P. Borges and R. S. Mendes, A q-generalization of Laplace transforms, Journal of Physics A: Mathematical and General, 32 (1999), 8551-8561. doi: 10.1088/0305-4470/32/48/314. Google Scholar

[9]

K. S. Lomax, Business failures, another example of the analysis of failure data, Journal of the American Statistics Association, 49 (1954), 847-852. doi: 10.1080/01621459.1954.10501239. Google Scholar

[10]

J. Ma and D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bulletin of Mathematical Biology, 68 (2006), 679-702. doi: 10.1007/s11538-005-9047-7. Google Scholar

[11]

A. W. Marshall and I. Olkin, Life Distributions, Structure of Nonparametric, Semiparametric and Parametric Families, Springer, 2007. Google Scholar

[12]

S. R. Naik, The q-Laplace transforms and applications, Chapter 7 of Pathway Distributions, Autoregressive Processes and Their Applications, PhD Thesis, Mahatima Gandhi University, India, (2008).Google Scholar

[13]

A. Olivieri, Heterogeneity in survival models, applications to pensions and life annuities, Belgian Actuarial Bulletin, 6 (2006), 23-39. doi: 10.2139/ssrn.913770. Google Scholar

[14]

S. PicoliR. S. MendesL. C. Malacarne and R. P. B. Santos, q-distributions in complex systems: A brief review, Brazilian Journal of Physics, 39 (2009), 468-474. doi: 10.1590/S0103-97332009000400023. Google Scholar

[15]

S. Ross, Stochastic Processes, Second Edition, Wiley and Sons Inc, 1996. Google Scholar

[16]

R. K. Saxena, A study of the generalized Stieltjes transform, Lecturer in Mathematics, M.B. College, Udaipur, 25 (1959), 340-355. Google Scholar

[17]

J. F. Steffensen, Deux problèms du calcul des probabilités, Ann. Inst. H. Poincaré, 3 (1933), 319-344. Google Scholar

[18]

J. W. VaupelK. G. Manton and E. Stallard, The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16 (1979), 439-354. doi: 10.2307/2061224. Google Scholar

[19]

H. W. Watson and F. Galton, On the probability of extinction of families, J. Anthropol. Inst. Great Britain and Ireland, 4 (1874), 138-144. Google Scholar

[20]

P. Yan and Z. Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness, Mathematical Biosciences, 224 (2010), 43-52. doi: 10.1016/j.mbs.2009.12.007. Google Scholar

[21]

O. Yürekli, A theorem on the generalized Stieltjes transform and its applications, Journal of Mathematical Analysis and Applications, 168 (1992), 63-71. doi: 10.1016/0022-247X(92)90189-K. Google Scholar

show all references

References:
[1] R. Anderson and R. May, Infectious Diseases of Humans, Dynamics and Control, Oxford University Press, 1991. Google Scholar
[2]

O. Diekmann, J. A. P. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton Series in Theoretical and Computational Biology, Princeton University Press, 2013. Google Scholar

[3]

K. Dietz, Some problems in the theory of infectious diseases transmission and control, in Epidemic Models: their Structure and Relation to Data (ed. Denis Mollison), Cambridge University Press, (1995), 3-16.Google Scholar

[4]

M. Greenwood and G. Yule, An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to occurrence of multiple attacks of diseases or of repeated accidents, Journal of the Royal Statistical Society, 83 (1920), 255-279. doi: 10.2307/2341080. Google Scholar

[5]

S. Goldstein, Operational representation of Whittaker's confluent hypergeometric function and Weber's parabolic cylinder function, Proc. London Math. Soc., 2 (1932), 103-125. doi: 10.1112/plms/s2-34.1.103. Google Scholar

[6]

P. Hougaard, Life table methods for heterogenous populations: Distributions describing the heterogeneity, Biometrika, 71 (1984), 75-83. doi: 10.1093/biomet/71.1.75. Google Scholar

[7]

P. Hougaard, Frailty models for survival data, Lifetime Data Analysis, 1 (1995), 255-273. doi: 10.1007/BF00985760. Google Scholar

[8]

E. K. LenziE. P. Borges and R. S. Mendes, A q-generalization of Laplace transforms, Journal of Physics A: Mathematical and General, 32 (1999), 8551-8561. doi: 10.1088/0305-4470/32/48/314. Google Scholar

[9]

K. S. Lomax, Business failures, another example of the analysis of failure data, Journal of the American Statistics Association, 49 (1954), 847-852. doi: 10.1080/01621459.1954.10501239. Google Scholar

[10]

J. Ma and D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bulletin of Mathematical Biology, 68 (2006), 679-702. doi: 10.1007/s11538-005-9047-7. Google Scholar

[11]

A. W. Marshall and I. Olkin, Life Distributions, Structure of Nonparametric, Semiparametric and Parametric Families, Springer, 2007. Google Scholar

[12]

S. R. Naik, The q-Laplace transforms and applications, Chapter 7 of Pathway Distributions, Autoregressive Processes and Their Applications, PhD Thesis, Mahatima Gandhi University, India, (2008).Google Scholar

[13]

A. Olivieri, Heterogeneity in survival models, applications to pensions and life annuities, Belgian Actuarial Bulletin, 6 (2006), 23-39. doi: 10.2139/ssrn.913770. Google Scholar

[14]

S. PicoliR. S. MendesL. C. Malacarne and R. P. B. Santos, q-distributions in complex systems: A brief review, Brazilian Journal of Physics, 39 (2009), 468-474. doi: 10.1590/S0103-97332009000400023. Google Scholar

[15]

S. Ross, Stochastic Processes, Second Edition, Wiley and Sons Inc, 1996. Google Scholar

[16]

R. K. Saxena, A study of the generalized Stieltjes transform, Lecturer in Mathematics, M.B. College, Udaipur, 25 (1959), 340-355. Google Scholar

[17]

J. F. Steffensen, Deux problèms du calcul des probabilités, Ann. Inst. H. Poincaré, 3 (1933), 319-344. Google Scholar

[18]

J. W. VaupelK. G. Manton and E. Stallard, The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16 (1979), 439-354. doi: 10.2307/2061224. Google Scholar

[19]

H. W. Watson and F. Galton, On the probability of extinction of families, J. Anthropol. Inst. Great Britain and Ireland, 4 (1874), 138-144. Google Scholar

[20]

P. Yan and Z. Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness, Mathematical Biosciences, 224 (2010), 43-52. doi: 10.1016/j.mbs.2009.12.007. Google Scholar

[21]

O. Yürekli, A theorem on the generalized Stieltjes transform and its applications, Journal of Mathematical Analysis and Applications, 168 (1992), 63-71. doi: 10.1016/0022-247X(92)90189-K. Google Scholar

Figure 1.  Length-biasness in a prevalence cohort: the red sections represent the infectious period. Only 2 individuals with longer infectious periods are included in the prevalence cohort.
Figure 2.  Verbal and graphic presentation for the convex order showing that $X_{2}$ is more "spread out" than $X_{1}$.
Figure 3.  Schematic presentation of $R_{v}(\phi)/R_{0}$ and $R_{c}(\phi)/R_{0}$ as two survival functions standardized by the scale parameter $\lambda.$
Figure 4.  A schmatic presentation of $G(z;R_{0},f_{G}).$
Figure 5.  Shapes of $\xi(z)$ and $\overline{F}^{(frailty)}(x)=\left( 1+\phi xv\right) ^{-1/v}$.
Figure 6.  Comparing $G_{Gamma}(z)$ given by (16) and $G_{inv-Gaussian}(z)$ given by (18) against $G^{\ast}(z)=\frac{R_{0}}{1+\left( R_{0}-1\right) z}.$
Figure 7.  Integrand in (17) at $R_{0}=3;$ $\theta$ from $0.01$ to $\infty$ $.$
Figure 8.  $f_{G}(x)=\frac{1}{\mu}\overline{F}_{I}(x)$ when the infectious period is Gamma distributed.
Figure 9.  Shapes of $f_{G}(x)$ in the special cases in the presence of a latent period.
Figure 10.  The left panel is for the value $R_{v}(\rho)$ and the right panel is for the correponding final sizes. At each level of $R_{0}$, there are $16$ points plotted at each $v$.
Figure 11.  At each $R_{0}$ level, there are $16$ points plotted at $v=0.00,...,4.00$ by $0.5$ increment with trend lines as the averages.
Table 1.  Tabulation of $R_{v}^{\ast}(R_{0})$ in (14) along with $R_{v}(R_{0},\theta)$ with respect to Gamma and inverse-Gaussian distributed infectious period at $R_{0}=2$ and $R_{0}=3,$ noticing that $R_{v}^{\ast}(R_{0})$ is identical to Gamma distributed infectious period with $\theta=1.$
$R_{0}=2$
$v$ $R_{v}^{\ast}$ $\theta$ $\theta>0:$ Gamma $\theta>0:$ inv-Gaussian
$\rightarrow0$ $0.2$ $1$ $2$ $10$ $0.2$ $1$ $2$ $10$
$0.25$ $1.059$ $1.061$ $1.061$ $1.059$ $1.057$ $1.055$ $1.060$ $1.056$ $1.054$ $1.049$
$0.50$ $1.109$ $1.113$ $1.112$ $1.109$ $1.108$ $1.105$ $1.112$ $1.106$ $1.103$ $1.095$
$1.00$ $1.193$ $1.196$ $1.195$ $1.193$ $1.191$ $1.188$ $1.195$ $1.189$ $1.185$ $1.176$
$2.00$ $1.311$ $1.313$ $1.313$ $1.311$ $1.310$ $1.308$ $1.312$ $1.308$ $1.304$ $1.297$
$R_{0}=3$
$R_{v}^{\ast}$ $\theta$ $\theta>0:$ Gamma $\theta>0:$ inv-Gaussian
$\rightarrow0$ $0.2$ $1$ $2$ $10$ $0.2$ $1$ $2$ $10$
$0.25$ $1.109$ $1.132$ $1.123$ $1.109$ $1.103$ $1.095$ $1.123$ $1.105$ $1.095$ $1.077$
$0.50$ $1.211$ $1.244$ $1.232$ $1.211$ $1.201$ $1.188$ $1.231$ $1.204$ $1.187$ $1.156$
$1.00$ $1.384$ $1.425$ $1.411$ $1.384$ $1.372$ $1.355$ $1.410$ $1.374$ $1.352$ $1.308$
$2.00$ $1.637$ $1.677$ $1.663$ $1.637$ $1.624$ $1.606$ $1.662$ $1.626$ $1.603$ $1.554$
$R_{0}=2$
$v$ $R_{v}^{\ast}$ $\theta$ $\theta>0:$ Gamma $\theta>0:$ inv-Gaussian
$\rightarrow0$ $0.2$ $1$ $2$ $10$ $0.2$ $1$ $2$ $10$
$0.25$ $1.059$ $1.061$ $1.061$ $1.059$ $1.057$ $1.055$ $1.060$ $1.056$ $1.054$ $1.049$
$0.50$ $1.109$ $1.113$ $1.112$ $1.109$ $1.108$ $1.105$ $1.112$ $1.106$ $1.103$ $1.095$
$1.00$ $1.193$ $1.196$ $1.195$ $1.193$ $1.191$ $1.188$ $1.195$ $1.189$ $1.185$ $1.176$
$2.00$ $1.311$ $1.313$ $1.313$ $1.311$ $1.310$ $1.308$ $1.312$ $1.308$ $1.304$ $1.297$
$R_{0}=3$
$R_{v}^{\ast}$ $\theta$ $\theta>0:$ Gamma $\theta>0:$ inv-Gaussian
$\rightarrow0$ $0.2$ $1$ $2$ $10$ $0.2$ $1$ $2$ $10$
$0.25$ $1.109$ $1.132$ $1.123$ $1.109$ $1.103$ $1.095$ $1.123$ $1.105$ $1.095$ $1.077$
$0.50$ $1.211$ $1.244$ $1.232$ $1.211$ $1.201$ $1.188$ $1.231$ $1.204$ $1.187$ $1.156$
$1.00$ $1.384$ $1.425$ $1.411$ $1.384$ $1.372$ $1.355$ $1.410$ $1.374$ $1.352$ $1.308$
$2.00$ $1.637$ $1.677$ $1.663$ $1.637$ $1.624$ $1.606$ $1.662$ $1.626$ $1.603$ $1.554$
Table 2.  Constant infectious period without latent period.
$R_{0}=2,$ $\rho=1.594/\mu$ $R_{0}=3,$ $\rho=2.821/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.061$ $0.113$ $1.120$ $0.25$ $1.132$ $0.224$ $1.190$
$1.00$ $1.196$ $0.309$ $1.577$ $1.00$ $1.426$ $0.531$ $2.024$
$2.00$ $1.313$ $0.436$ $2.510$ $2.00$ $1.678$ $0.681$ $4.253$
$3.00$ $1.394$ $0.506$ $4.056$ $3.00$ $1.847$ $0.750$ $9.352$
$4.00$ $1.454$ $0.551$ $6.668$ $4.00$ $1.971$ $0.789$ $21.512$
$R_{0}=2,$ $\rho=1.594/\mu$ $R_{0}=3,$ $\rho=2.821/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.061$ $0.113$ $1.120$ $0.25$ $1.132$ $0.224$ $1.190$
$1.00$ $1.196$ $0.309$ $1.577$ $1.00$ $1.426$ $0.531$ $2.024$
$2.00$ $1.313$ $0.436$ $2.510$ $2.00$ $1.678$ $0.681$ $4.253$
$3.00$ $1.394$ $0.506$ $4.056$ $3.00$ $1.847$ $0.750$ $9.352$
$4.00$ $1.454$ $0.551$ $6.668$ $4.00$ $1.971$ $0.789$ $21.512$
Table 3.  Exponential infectious period without latent period.
$R_{0}=2,$ $\rho=1/\mu$ $R_{0}=3,$ $\rho=2/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.059$ $0.108$ $1.133$ $0.25$ $1.109$ $0.190$ $1.186$
$1.00$ $1.193$ $0.305$ $1.639$ $1.00$ $1.384$ $0.498$ $2.022$
$2.00$ $1.311$ $0.434$ $2.670$ $2.00$ $1.637$ $0.661$ $4.257$
$3.00$ $1.393$ $0.506$ $4.370$ $3.00$ $1.811$ $0.737$ $9.325$
$4.00$ $1.454$ $0.552$ $7.229$ $4.00$ $1.940$ $0.780$ $21.295$
$R_{0}=2,$ $\rho=1/\mu$ $R_{0}=3,$ $\rho=2/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.059$ $0.108$ $1.133$ $0.25$ $1.109$ $0.190$ $1.186$
$1.00$ $1.193$ $0.305$ $1.639$ $1.00$ $1.384$ $0.498$ $2.022$
$2.00$ $1.311$ $0.434$ $2.670$ $2.00$ $1.637$ $0.661$ $4.257$
$3.00$ $1.393$ $0.506$ $4.370$ $3.00$ $1.811$ $0.737$ $9.325$
$4.00$ $1.454$ $0.552$ $7.229$ $4.00$ $1.940$ $0.780$ $21.295$
Table 4.  Gamma distributed infectious period in four scenarios.
Gamma distributed infectious period, variance/mean ratio =2
$R_{0}=2,$ $\theta=0.5,$ $\rho=0.719/\mu$ $R_{0}=3,$ $\theta=0.5,\rho=1.5/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.057$ $0.106$ $1.136$ $0.25$ $1.103$ $0.181$ $1.185$
$1.00$ $1.191$ $0.303$ $1.660$ $1.00$ $1.372$ $0.488$ $2.030$
$2.00$ $1.310$ $0.433$ $2.731$ $2.00$ $1.624$ $0.655$ $4.295$
$3.00$ $1.393$ $0.505$ $4.501$ $3.00$ $1.800$ $0.732$ $9.425$
$4.00$ $1.454$ $0.551$ $7.481$ $4.00$ $1.930$ $0.777$ $21.507$
Gamma distributed infectious period, variance/mean ratio =0.5
$R_{0}=2,$ $\theta=2,$ $\rho=1.236/\mu$ $R_{0}=3,$ $\theta=2,\rho=2.372/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.060$ $0.110$ $1.129$ $0.25$ $1.116$ $0.201$ $1.186$
$1.00$ $1.194$ $0.306$ $1.618$ $1.00$ $1.397$ $0.509$ $2.017$
$2.00$ $1.312$ $0.435$ $2.611$ $2.00$ $1.650$ $0.668$ $4.234$
$3.00$ $1.393$ $0.506$ $4.249$ $3.00$ $1.823$ $0.741$ $9.272$
$4.00$ $1.454$ $0.552$ $7.006$ $4.00$ $1.950$ $0.783$ $21.215$
Gamma distributed infectious period, variance/mean ratio =2
$R_{0}=2,$ $\theta=0.5,$ $\rho=0.719/\mu$ $R_{0}=3,$ $\theta=0.5,\rho=1.5/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.057$ $0.106$ $1.136$ $0.25$ $1.103$ $0.181$ $1.185$
$1.00$ $1.191$ $0.303$ $1.660$ $1.00$ $1.372$ $0.488$ $2.030$
$2.00$ $1.310$ $0.433$ $2.731$ $2.00$ $1.624$ $0.655$ $4.295$
$3.00$ $1.393$ $0.505$ $4.501$ $3.00$ $1.800$ $0.732$ $9.425$
$4.00$ $1.454$ $0.551$ $7.481$ $4.00$ $1.930$ $0.777$ $21.507$
Gamma distributed infectious period, variance/mean ratio =0.5
$R_{0}=2,$ $\theta=2,$ $\rho=1.236/\mu$ $R_{0}=3,$ $\theta=2,\rho=2.372/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.060$ $0.110$ $1.129$ $0.25$ $1.116$ $0.201$ $1.186$
$1.00$ $1.194$ $0.306$ $1.618$ $1.00$ $1.397$ $0.509$ $2.017$
$2.00$ $1.312$ $0.435$ $2.611$ $2.00$ $1.650$ $0.668$ $4.234$
$3.00$ $1.393$ $0.506$ $4.249$ $3.00$ $1.823$ $0.741$ $9.272$
$4.00$ $1.454$ $0.552$ $7.006$ $4.00$ $1.950$ $0.783$ $21.215$
Table 5.  Constant latent period and constant infectious period in six scenarios.
The latent period is half the infectious period: $l=1/2$
$R_{0}=2,$ $l=0.5,$ $\rho=0.714/\mu$ $R_{0}=3,$ $l=0.5,\rho=1.153/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.057$ $0.105$ $1.097$ $0.25$ $1.136$ $0.229$ $1.156$
$1.00$ $1.184$ $0.294$ $1.463$ $1.00$ $1.428$ $0.533$ $1.842$
$2.00$ $1.298$ $0.421$ $2.209$ $2.00$ $1.676$ $0.680$ $3.685$
$3.00$ $1.378$ $0.493$ $3.444$ $3.00$ $1.844$ $0.748$ $7.968$
$4.00$ $1.438$ $0.540$ $5.537$ $4.00$ $1.967$ $0.788$ $18.345$
The latent period equals to the infectious period: $l=1$
$R_{0}=2,$ $l=1,$ $\rho=0.468/\mu$ $R_{0}=3,$ $l=1,\rho=0.748/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.056$ $0.104$ $1.094$ $0.25$ $1.136$ $0.230$ $1.153$
$1.00$ $1.182$ $0.292$ $1.451$ $1.00$ $1.429$ $0.533$ $1.829$
$2.00$ $1.296$ $0.419$ $2.182$ $2.00$ $1.677$ $0.681$ $3.658$
$3.00$ $1.376$ $0.491$ $3.398$ $3.00$ $1.845$ $0.749$ $7.919$
$4.00$ $1.436$ $0.539$ $5.461$ $4.00$ $1.968$ $0.788$ $18.257$
The latent period is twice the infectious period: $l=2$
$R_{0}=2,$ $l=2,$ $\rho=0.279/\mu$ $R_{0}=3,$ $l=2,\rho=0.443/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.056$ $0.103$ $1.093$ $0.25$ $1.136$ $0.230$ $1.152$
$1.00$ $1.182$ $0.291$ $1.446$ $1.00$ $1.430$ $0.534$ $1.823$
$2.00$ $1.295$ $0.418$ $2.170$ $2.00$ $1.678$ $0.681$ $3.647$
$3.00$ $1.375$ $0.491$ $3.377$ $3.00$ $1.845$ $0.749$ $7.899$
$4.00$ $1.435$ $0.538$ $5.428$ $4.00$ $1.968$ $0.788$ $18.222$
The latent period is half the infectious period: $l=1/2$
$R_{0}=2,$ $l=0.5,$ $\rho=0.714/\mu$ $R_{0}=3,$ $l=0.5,\rho=1.153/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.057$ $0.105$ $1.097$ $0.25$ $1.136$ $0.229$ $1.156$
$1.00$ $1.184$ $0.294$ $1.463$ $1.00$ $1.428$ $0.533$ $1.842$
$2.00$ $1.298$ $0.421$ $2.209$ $2.00$ $1.676$ $0.680$ $3.685$
$3.00$ $1.378$ $0.493$ $3.444$ $3.00$ $1.844$ $0.748$ $7.968$
$4.00$ $1.438$ $0.540$ $5.537$ $4.00$ $1.967$ $0.788$ $18.345$
The latent period equals to the infectious period: $l=1$
$R_{0}=2,$ $l=1,$ $\rho=0.468/\mu$ $R_{0}=3,$ $l=1,\rho=0.748/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.056$ $0.104$ $1.094$ $0.25$ $1.136$ $0.230$ $1.153$
$1.00$ $1.182$ $0.292$ $1.451$ $1.00$ $1.429$ $0.533$ $1.829$
$2.00$ $1.296$ $0.419$ $2.182$ $2.00$ $1.677$ $0.681$ $3.658$
$3.00$ $1.376$ $0.491$ $3.398$ $3.00$ $1.845$ $0.749$ $7.919$
$4.00$ $1.436$ $0.539$ $5.461$ $4.00$ $1.968$ $0.788$ $18.257$
The latent period is twice the infectious period: $l=2$
$R_{0}=2,$ $l=2,$ $\rho=0.279/\mu$ $R_{0}=3,$ $l=2,\rho=0.443/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.056$ $0.103$ $1.093$ $0.25$ $1.136$ $0.230$ $1.152$
$1.00$ $1.182$ $0.291$ $1.446$ $1.00$ $1.430$ $0.534$ $1.823$
$2.00$ $1.295$ $0.418$ $2.170$ $2.00$ $1.678$ $0.681$ $3.647$
$3.00$ $1.375$ $0.491$ $3.377$ $3.00$ $1.845$ $0.749$ $7.899$
$4.00$ $1.435$ $0.538$ $5.428$ $4.00$ $1.968$ $0.788$ $18.222$
Table 6.  Exponentially distributed latent period and exponentially distributed infectious period.
Mean latent period equals to the mean infectious period: $l=1$
$R_{0}=2,$ $\rho=0.414/\mu$ $R_{0}=3,$ $\rho=0.732/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.059$ $0.110$ $1.116$ $0.25$ $1.126$ $0.215$ $1.174$
$1.00$ $1.191$ $0.303$ $1.548$ $1.00$ $1.413$ $0.521$ $1.930$
$2.00$ $1.307$ $0.430$ $2.414$ $2.00$ $1.663$ $0.674$ $3.923$
$3.00$ $1.387$ $0.501$ $3.831$ $3.00$ $1.833$ $0.745$ $8.463$
$4.00$ $1.447$ $0.547$ $6.209$ $4.00$ $1.958$ $0.785$ $19.310$
Either $\mu_{E}=\mu,$ $\mu_{I}=2\mu$ or $\mu_{E}=2\mu,$ $\mu_{I}=\mu$
$R_{0}=2,$ $\rho=0.281/\mu$ $R_{0}=3,$ $\rho=0.5/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.059$ $0.109$ $1.117$ $0.25$ $1.124$ $0.213$ $1.174$
$1.00$ $1.191$ $0.302$ $1.552$ $1.00$ $1.410$ $0.519$ $1.931$
$2.00$ $1.307$ $0.430$ $2.425$ $2.00$ $1.660$ $0.673$ $3.926$
$3.00$ $1.387$ $0.501$ $3.851$ $3.00$ $1.831$ $0.744$ $8.463$
$4.00$ $1.448$ $0.547$ $6.242$ $4.00$ $1.956$ $0.784$ $19.298$
Mean latent period equals to the mean infectious period: $l=1$
$R_{0}=2,$ $\rho=0.414/\mu$ $R_{0}=3,$ $\rho=0.732/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.059$ $0.110$ $1.116$ $0.25$ $1.126$ $0.215$ $1.174$
$1.00$ $1.191$ $0.303$ $1.548$ $1.00$ $1.413$ $0.521$ $1.930$
$2.00$ $1.307$ $0.430$ $2.414$ $2.00$ $1.663$ $0.674$ $3.923$
$3.00$ $1.387$ $0.501$ $3.831$ $3.00$ $1.833$ $0.745$ $8.463$
$4.00$ $1.447$ $0.547$ $6.209$ $4.00$ $1.958$ $0.785$ $19.310$
Either $\mu_{E}=\mu,$ $\mu_{I}=2\mu$ or $\mu_{E}=2\mu,$ $\mu_{I}=\mu$
$R_{0}=2,$ $\rho=0.281/\mu$ $R_{0}=3,$ $\rho=0.5/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.059$ $0.109$ $1.117$ $0.25$ $1.124$ $0.213$ $1.174$
$1.00$ $1.191$ $0.302$ $1.552$ $1.00$ $1.410$ $0.519$ $1.931$
$2.00$ $1.307$ $0.430$ $2.425$ $2.00$ $1.660$ $0.673$ $3.926$
$3.00$ $1.387$ $0.501$ $3.851$ $3.00$ $1.831$ $0.744$ $8.463$
$4.00$ $1.448$ $0.547$ $6.242$ $4.00$ $1.956$ $0.784$ $19.298$
Table 7.  Constant latent period and exponentially distributed infectious period.
The latent period is half the infectious period: $l=1/2$
$R_{0}=2,$ $\rho=0.53249/\mu$ $R_{0}=3,$ $\rho=0.90659/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.057$ $0.106$ $1.106$ $0.25$ $1.127$ $0.216$ $1.160$
$1.00$ $1.186$ $0.296$ $1.501$ $1.00$ $1.413$ $0.521$ $1.855$
$2.00$ $1.301$ $0.424$ $2.289$ $2.00$ $1.661$ $0.673$ $3.701$
$3.00$ $1.381$ $0.495$ $3.581$ $3.00$ $1.831$ $0.744$ $7.953$
$4.00$ $1.441$ $0.542$ $5.757$ $4.00$ $1.956$ $0.784$ $18.210$
The latent period equals to the infectious period: $l=1$
$R_{0}=2,$ $\rho=0.3748/\mu$ $R_{0}=3,$ $,\rho=0.61764/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.057$ $0.105$ $1.100$ $0.25$ $1.131$ $0.223$ $1.156$
$1.00$ $1.184$ $0.294$ $1.476$ $1.00$ $1.421$ $0.527$ $1.840$
$2.00$ $1.298$ $0.421$ $2.232$ $2.00$ $1.669$ $0.6769$ $3.673$
$3.00$ $1.378$ $0.493$ $3.482$ $3.00$ $1.838$ $0.746$ $7.921$
$4.00$ $1.438$ $0.540$ $5.596$ $4.00$ $1.962$ $0.786$ $18.201$
The latent period is twice the infectious period: $l=2$
$R_{0}=2,$ $\rho=0.2393/\mu$ $R_{0}=3,$ $\rho=0.386/\mu.$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.056$ $0.104$ $1.096$ $0.25$ $1.134$ $0.227.$ $1.154$
$1.00$ $1.183$ $0.292$ $1.458$ $1.00$ $1.426$ $0.531$ $1.831$
$2.00$ $1.297$ $0.420$ $2.196$ $2.00$ $1.674$ $0.679$ $3.658$
$3.00$ $1.377$ $0.492$ $3.421$ $3.00$ $1.842$ $0.748$ $7.909$
$4.00$ $1.437$ $0.539$ $5.498$ $4.00$ $1.966$ $0.787$ $18.215$
The latent period is half the infectious period: $l=1/2$
$R_{0}=2,$ $\rho=0.53249/\mu$ $R_{0}=3,$ $\rho=0.90659/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.057$ $0.106$ $1.106$ $0.25$ $1.127$ $0.216$ $1.160$
$1.00$ $1.186$ $0.296$ $1.501$ $1.00$ $1.413$ $0.521$ $1.855$
$2.00$ $1.301$ $0.424$ $2.289$ $2.00$ $1.661$ $0.673$ $3.701$
$3.00$ $1.381$ $0.495$ $3.581$ $3.00$ $1.831$ $0.744$ $7.953$
$4.00$ $1.441$ $0.542$ $5.757$ $4.00$ $1.956$ $0.784$ $18.210$
The latent period equals to the infectious period: $l=1$
$R_{0}=2,$ $\rho=0.3748/\mu$ $R_{0}=3,$ $,\rho=0.61764/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.057$ $0.105$ $1.100$ $0.25$ $1.131$ $0.223$ $1.156$
$1.00$ $1.184$ $0.294$ $1.476$ $1.00$ $1.421$ $0.527$ $1.840$
$2.00$ $1.298$ $0.421$ $2.232$ $2.00$ $1.669$ $0.6769$ $3.673$
$3.00$ $1.378$ $0.493$ $3.482$ $3.00$ $1.838$ $0.746$ $7.921$
$4.00$ $1.438$ $0.540$ $5.596$ $4.00$ $1.962$ $0.786$ $18.201$
The latent period is twice the infectious period: $l=2$
$R_{0}=2,$ $\rho=0.2393/\mu$ $R_{0}=3,$ $\rho=0.386/\mu.$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.056$ $0.104$ $1.096$ $0.25$ $1.134$ $0.227.$ $1.154$
$1.00$ $1.183$ $0.292$ $1.458$ $1.00$ $1.426$ $0.531$ $1.831$
$2.00$ $1.297$ $0.420$ $2.196$ $2.00$ $1.674$ $0.679$ $3.658$
$3.00$ $1.377$ $0.492$ $3.421$ $3.00$ $1.842$ $0.748$ $7.909$
$4.00$ $1.437$ $0.539$ $5.498$ $4.00$ $1.966$ $0.787$ $18.215$
Table 8.  Exponentially distributed latent period and constant infectious period.
The latent period is half the infectious period: $l=1/2$
$R_{0}=2,$ $\rho=0.7788/\mu$ $R_{0}=3,$ $\rho=0.1325/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.059$ $0.109$ $1.109$ $0.25$ $1.131$ $0.222$ $1.169$
$1.00$ $1.189$ $0.300$ $1.517$ $1.00$ $1.422$ $0.528$ $1.907$
$2.00$ $1.304$ $0.427$ $2.340$ $2.00$ $1.671$ $0.678$ $3.865$
$3.00$ $1.385$ $0.499$ $3.694$ $3.00$ $1.840$ $0.747$ $8.351$
$4.00$ $1.445$ $0.545$ $5.972$ $4.00$ $1.964$ $0.787$ $19.123$
The latent period equals to the infectious period: $l=1$
$R_{0}=2,$ $\rho=0.5432/\mu$ $R_{0}=3,$ $,\rho=0.9426/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.058$ $0.108$ $1.112$ $0.25$ $1.127$ $0.216$ $1.168$
$1.00$ $1.189$ $0.300$ $1.528$ $1.00$ $1.414$ $0.522$ $1.903$
$2.00$ $1.304$ $0.427$ $2.362$ $2.00$ $1.664$ $0.674$ $3.849$
$3.00$ $1.385$ $0.499$ $3.731$ $3.00$ $1.834$ $0.745$ $8.298$
$4.00$ $1.445$ $0.545$ $6.030$ $4.00$ $1.958$ $0.785$ $18.965$
The latent period is twice the infectious period: $l=2$
$R_{0}=2,$ $\rho=0.3455/\mu$ $R_{0}=3,$ $\rho=0.6186/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.058$ $0.108$ $1.116$ $0.25$ $1.122$ $0.209$ $1.170$
$1.00$ $1.189$ $0.300$ $1.548$ $1.00$ $1.405$ $0.515$ $1.910$
$2.00$ $1.305$ $0.428$ $2.410$ $2.00$ $1.655$ $0.670$ $3.860$
$3.00$ $1.386$ $0.500$ $3.816$ $3.00$ $1.826$ $0.742$ $8.301$
$4.00$ $1.446$ $0.546$ $6.173$ $4.00$ $1.951$ $0.783$ $18.915$
The latent period is half the infectious period: $l=1/2$
$R_{0}=2,$ $\rho=0.7788/\mu$ $R_{0}=3,$ $\rho=0.1325/\mu$
$v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.059$ $0.109$ $1.109$ $0.25$ $1.131$ $0.222$ $1.169$
$1.00$ $1.189$ $0.300$ $1.517$ $1.00$ $1.422$ $0.528$ $1.907$
$2.00$ $1.304$ $0.427$ $2.340$ $2.00$ $1.671$ $0.678$ $3.865$
$3.00$ $1.385$ $0.499$ $3.694$ $3.00$ $1.840$ $0.747$ $8.351$
$4.00$ $1.445$ $0.545$ $5.972$ $4.00$ $1.964$ $0.787$ $19.123$
The latent period equals to the infectious period: $l=1$
$R_{0}=2,$ $\rho=0.5432/\mu$ $R_{0}=3,$ $,\rho=0.9426/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.058$ $0.108$ $1.112$ $0.25$ $1.127$ $0.216$ $1.168$
$1.00$ $1.189$ $0.300$ $1.528$ $1.00$ $1.414$ $0.522$ $1.903$
$2.00$ $1.304$ $0.427$ $2.362$ $2.00$ $1.664$ $0.674$ $3.849$
$3.00$ $1.385$ $0.499$ $3.731$ $3.00$ $1.834$ $0.745$ $8.298$
$4.00$ $1.445$ $0.545$ $6.030$ $4.00$ $1.958$ $0.785$ $18.965$
The latent period is twice the infectious period: $l=2$
$R_{0}=2,$ $\rho=0.3455/\mu$ $R_{0}=3,$ $\rho=0.6186/\mu$
$v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$ $v$ $R_{c}(\rho,\rho)$ $\eta$ $\rho^{\prime}/\rho$
$0.00$ $1.000$ $0.000$ $1.000$ $0.00$ $1.000$ $0.000$ $1.000$
$0.25$ $1.058$ $0.108$ $1.116$ $0.25$ $1.122$ $0.209$ $1.170$
$1.00$ $1.189$ $0.300$ $1.548$ $1.00$ $1.405$ $0.515$ $1.910$
$2.00$ $1.305$ $0.428$ $2.410$ $2.00$ $1.655$ $0.670$ $3.860$
$3.00$ $1.386$ $0.500$ $3.816$ $3.00$ $1.826$ $0.742$ $8.301$
$4.00$ $1.446$ $0.546$ $6.173$ $4.00$ $1.951$ $0.783$ $18.915$
[1]

M. H. A. Biswas, L. T. Paiva, MdR de Pinho. A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences & Engineering, 2014, 11 (4) : 761-784. doi: 10.3934/mbe.2014.11.761

[2]

Hongbin Guo, Michael Yi Li. Global dynamics of a staged progression model for infectious diseases. Mathematical Biosciences & Engineering, 2006, 3 (3) : 513-525. doi: 10.3934/mbe.2006.3.513

[3]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[4]

Arvind Kumar Misra, Rajanish Kumar Rai, Yasuhiro Takeuchi. Modeling the control of infectious diseases: Effects of TV and social media advertisements. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1315-1343. doi: 10.3934/mbe.2018061

[5]

Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences & Engineering, 2016, 13 (4) : 813-840. doi: 10.3934/mbe.2016019

[6]

Markus Thäter, Kurt Chudej, Hans Josef Pesch. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences & Engineering, 2018, 15 (2) : 485-505. doi: 10.3934/mbe.2018022

[7]

Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (3) : 467-483. doi: 10.3934/mbe.2006.3.467

[8]

Darja Kalajdzievska, Michael Yi Li. Modeling the effects of carriers on transmission dynamics of infectious diseases. Mathematical Biosciences & Engineering, 2011, 8 (3) : 711-722. doi: 10.3934/mbe.2011.8.711

[9]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

[10]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[11]

M. Predescu, R. Levins, T. Awerbuch-Friedlander. Analysis of a nonlinear system for community intervention in mosquito control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 605-622. doi: 10.3934/dcdsb.2006.6.605

[12]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[13]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[14]

Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445

[15]

Andreas Widder. On the usefulness of set-membership estimation in the epidemiology of infectious diseases. Mathematical Biosciences & Engineering, 2018, 15 (1) : 141-152. doi: 10.3934/mbe.2018006

[16]

Andrey V. Melnik, Andrei Korobeinikov. Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1019-1034. doi: 10.3934/mbe.2011.8.1019

[17]

Yinggao Zhou, Jianhong Wu, Min Wu. Optimal isolation strategies of emerging infectious diseases with limited resources. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1691-1701. doi: 10.3934/mbe.2013.10.1691

[18]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[19]

Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457

[20]

Sara Y. Del Valle, J. M. Hyman, Nakul Chitnis. Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1475-1497. doi: 10.3934/mbe.2013.10.1475

2018 Impact Factor: 1.313

Article outline

Figures and Tables

[Back to Top]