# American Institute of Mathematical Sciences

• Previous Article
Analyzing the causes of alpine meadow degradation and the efficiency of restoration strategies through a mathematical modelling exercise
• MBE Home
• This Issue
• Next Article
Mathematical insights on psoriasis regulation: Role of Th1 and Th2 cells
June  2018, 15(3): 739-764. doi: 10.3934/mbe.2018033

## Dynamics of a Filippov epidemic model with limited hospital beds

 a. Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China b. Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, China c. Laboratory of Mathematical Parallel Systems, Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada

* Corresponding author:Yanni Xiao.

Received  April 18, 2017 Revised  October 08, 2017 Published  December 2017

A Filippov epidemic model is proposed to explore the impact of capacity and limited resources of public health system on the control of epidemic diseases. The number of infected cases is chosen as an index to represent a threshold policy, that is, the capacity dependent treatment policy is implemented when the case number exceeds a critical level, and constant treatment rate is adopted otherwise. The proposed Filippov model exhibits various local sliding bifurcations, including boundary focus or node bifurcation, boundary saddle bifurcation and boundary saddle-node bifurcation, and global sliding bifurcations, including grazing bifurcation and sliding homoclinic bifurcation to pseudo-saddle. The impact of some key parameters including the threshold level on disease control is examined by numerical analysis. Our results suggest that strengthening the basic medical conditions, i.e. increasing the minimum treatment ratio, or enlarging the input of medical resources, i.e. increasing HBPR (i.e. hospital bed-population ratio) as well as the possibility and level of maximum treatment ratio, can help to contain the case number at a relatively low level when the basic reproduction number $R_0>1$. If $R_0<1$, implementing these strategies can help in eradicating the disease although the disease cannot always be eradicated due to the occurring of backward bifurcation in the system.

Citation: Aili Wang, Yanni Xiao, Huaiping Zhu. Dynamics of a Filippov epidemic model with limited hospital beds. Mathematical Biosciences & Engineering, 2018, 15 (3) : 739-764. doi: 10.3934/mbe.2018033
##### References:

show all references

##### References:
Boundary node bifurcation for Filippov system (4).
Boundary saddle bifurcation for Filippov system (4). Here we choose $I_c$ as a bifurcation parameter and fix all other parameters as follows: $\Lambda = 5, \mu = 0.08, \beta = 1.4, h_0 = 0.3, h_1 = 0.7, b = 3, \nu = 0.7, I_c = 2 \mbox{(a)}, I_c =1.1463\mbox{(b)}, I_c = 1\mbox{(c)}.$
Boundary saddle node bifurcation for Filippov system (4). Here we choose $I_c$ as a bifurcation parameter and fix all other parameters as follows: $\Lambda = 6, \mu = 0.1, \beta = 1.4, h_0 = 0.3, h_1 = 0.7834, \nu = 0.6, I_c = 2 \mbox{(a)}, I_c =2.5661\mbox{(b)}, I_c = 3\mbox{(c)}.$
Local and global sliding bifurcations for Filippov system (4). We select $I_c$ as a bifurcation parameter and fix all other parameters as follows: $\Lambda = 8, \mu = 0.1, \beta = 1.8, h_0 = 0.2, h_1 = 2, b = 3.28, \nu = 0.6, I_c = 4 \mbox{(a)}, I_c = 4.7844 \mbox{(b)}, I_c = 4.95 \mbox{(c)}, I_c = 5.03 \mbox{(d)}, I_c = 5.2 \mbox{(e)}, I_c = 6.009782 \mbox{(f)}, I_c = 6.3 \mbox{(g)}, I_c = 6.8556 \mbox{(h)}.$ Here the black thick solid line represents a periodic cycle while the blue thick solid line stands for the homoclinic cycle.
Evolution of the sliding modes and pseudo-equilibria for Filippov system (4) with respect to the threshold level $I_c$. Here we fix all other parameters as follows: $\Lambda = 8, \mu = 0.1, \beta = 1.8, h_0 = 0.2, \nu = 0.6$ and $h_1 = 0.8, b = 5\mbox{(a)}; h_1 = 2, b = 3.28\mbox{(b)}.$
Evolution of the sliding modes (grey thick solid lines), the regular endemic equilibria (circle points and square points) and pseudo-equilibria (diamond points) for Filippov system (4) with respect to the parameter $b$. Here we fix all other parameters as follows: $\Lambda = 8, \mu = 0.1, \beta = 1.8, h_0 = 0.2, \nu = 0.6$ and $h_1 = 0.8, I_c = 8.6 \mbox{(a)}; h_1 = 2, I_c = 8 \mbox{(b)}.$
Evolution of the infected cases with respect to the maximum per capita treatment rate $h_1$. Here we fix all other parameters as follows: $\Lambda = 8, \mu = 0.1, \beta = 1.8, \nu = 0.6, b = 5, h_0 = 0.2.$
Evolution of the equilibria with respect to the minimum per capita treatment rate $h_0$. Here we fix all other parameters as follows: $\Lambda = 8, \mu = 0.1, \beta = 1.8, \nu = 0.6$ and $b = 5, h_1 = 1.05 \mbox{(a)}; b = 3.28, h_1 = 2 \mbox{(b)}.$
Existence of endemic equilibria for system $S_{G_2}$
 Range of parameter values Existence of endemic equilibria $R_0>1$ $\frac{-a_1+\sqrt{C_0}}{2a_0}<\frac{\Lambda}{\mu+\nu}$ $E_2$ $R_0<1$ $a_0>0, a_1<0, C_0>0, \frac{-a_1+\sqrt{C_0}}{2a_0}<\frac{\Lambda}{\mu+\nu}$ $E_2, E_3$ $a_0>0, a_1<0, C_0=0, \frac{-a_1}{2a_0}<\frac{\Lambda}{\mu+\nu}$ $E_*$ $a_0=0, a_1<0, \frac{-a_2}{a_1}<\frac{\Lambda}{\mu+\nu}$ $E_4$ $C_0<0$ Nonexistence $a_0>0, a_1>0, C_0\geq 0$ Nonexistence $a_0=0, a_1\geq 0$ Nonexistence $R_0=1$ $R_1>1, \frac{-a_1}{2a_0}<\frac{\Lambda}{\mu+\nu}$ $E_2$ $R_1\leq 1$ Nonexistence
 Range of parameter values Existence of endemic equilibria $R_0>1$ $\frac{-a_1+\sqrt{C_0}}{2a_0}<\frac{\Lambda}{\mu+\nu}$ $E_2$ $R_0<1$ $a_0>0, a_1<0, C_0>0, \frac{-a_1+\sqrt{C_0}}{2a_0}<\frac{\Lambda}{\mu+\nu}$ $E_2, E_3$ $a_0>0, a_1<0, C_0=0, \frac{-a_1}{2a_0}<\frac{\Lambda}{\mu+\nu}$ $E_*$ $a_0=0, a_1<0, \frac{-a_2}{a_1}<\frac{\Lambda}{\mu+\nu}$ $E_4$ $C_0<0$ Nonexistence $a_0>0, a_1>0, C_0\geq 0$ Nonexistence $a_0=0, a_1\geq 0$ Nonexistence $R_0=1$ $R_1>1, \frac{-a_1}{2a_0}<\frac{\Lambda}{\mu+\nu}$ $E_2$ $R_1\leq 1$ Nonexistence
 [1] Shu Zhang, Yuan Yuan. The Filippov equilibrium and sliding motion in an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1189-1206. doi: 10.3934/dcdsb.2017058 [2] Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 [3] Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043 [4] Carles Bonet-Revés, Tere M-Seara. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3545-3601. doi: 10.3934/dcds.2016.36.3545 [5] Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2020006 [6] Patrick Ballard. Can the 'stick-slip' phenomenon be explained by a bifurcation in the steady sliding frictional contact problem?. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 363-381. doi: 10.3934/dcdss.2016001 [7] Soliman A. A. Hamdallah, Sanyi Tang. Stability and bifurcation analysis of Filippov food chain system with food chain control strategy. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1631-1647. doi: 10.3934/dcdsb.2019244 [8] Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. Impulsive control of a symmetric ball rolling without sliding or spinning. Journal of Geometric Mechanics, 2010, 2 (4) : 321-342. doi: 10.3934/jgm.2010.2.321 [9] D. J. W. Simpson, R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2889-2913. doi: 10.3934/dcdsb.2014.19.2889 [10] Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549 [11] Laura Levaggi. Existence of sliding motions for nonlinear evolution equations in Banach spaces. Conference Publications, 2013, 2013 (special) : 477-487. doi: 10.3934/proc.2013.2013.477 [12] Mondal Hasan Zahid, Christopher M. Kribs. Ebola: Impact of hospital's admission policy in an overwhelmed scenario. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1387-1399. doi: 10.3934/mbe.2018063 [13] Zuowei Cai, Jianhua Huang, Liu Yang, Lihong Huang. Periodicity and stabilization control of the delayed Filippov system with perturbation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1439-1467. doi: 10.3934/dcdsb.2019235 [14] Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002 [15] Alessandro Colombo, Nicoletta Del Buono, Luciano Lopez, Alessandro Pugliese. Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2911-2934. doi: 10.3934/dcdsb.2018166 [16] Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019107 [17] P. Daniele, S. Giuffrè, S. Pia. Competitive financial equilibrium problems with policy interventions. Journal of Industrial & Management Optimization, 2005, 1 (1) : 39-52. doi: 10.3934/jimo.2005.1.39 [18] Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435 [19] Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111 [20] Hongyu He, Naohiro Kato. Equilibrium submanifold for a biological system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1429-1441. doi: 10.3934/dcdss.2011.4.1429

2018 Impact Factor: 1.313