• Previous Article
    Optimal design for dynamical modeling of pest populations
  • MBE Home
  • This Issue
  • Next Article
    The role of structural viscoelasticity in deformable porous media with incompressible constituents: Applications in biomechanics
August  2018, 15(4): 961-991. doi: 10.3934/mbe.2018043

Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model

1. 

AgroParisTech, 16 rue Claude Bernard, 75231 Paris Cedex 05, France

2. 

Sorbonne Université, Université Paris-Diderot SPC, CNRS, INRIA, Laboratoire Jacques-Louis Lions, équipe Mamba, F-75005 Paris, France

3. 

LAGA - UMR 7539 Institut Galilée, Université Paris 13, 99, avenue Jean-Baptiste Clément 93430 Villetaneuse, France

4. 

IMPA, Estrada Dona Castorina, 110 Jardim Botânico 22460-320, Rio de Janeiro, RJ, Brazil

* Corresponding author: M. Strugarek.

Received  July 24, 2017 Accepted  January 03, 2018 Published  March 2018

Artificial releases of Wolbachia-infected Aedes mosquitoes have been under study in the past yearsfor fighting vector-borne diseases such as dengue, chikungunya and zika.Several strains of this bacterium cause cytoplasmic incompatibility (CI) and can also affect their host's fecundity or lifespan, while highly reducing vector competence for the main arboviruses.

We consider and answer the following questions: 1) what should be the initial condition (i.e. size of the initial mosquito population) to have invasion with one mosquito release source? We note that it is hard to have an invasion in such case. 2) How many release points does one need to have sufficiently high probability of invasion? 3) What happens if one accounts for uncertainty in the release protocol (e.g. unequal spacing among release points)?

We build a framework based on existing reaction-diffusion models for the uncertainty quantification in this context,obtain both theoretical and numerical lower bounds for the probability of release successand give new quantitative results on the one dimensional case.

Citation: Martin Strugarek, Nicolas Vauchelet, Jorge P. Zubelli. Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 961-991. doi: 10.3934/mbe.2018043
References:
[1]

http://www.cdc.gov/zika/transmission/index.html, 2016. Google Scholar

[2]

L. Alphey, Genetic control of mosquitoes, Annual Review of Entomology, 59 (2014), 205-224.  doi: 10.1146/annurev-ento-011613-162002.  Google Scholar

[3]

L. AlpheyA. McKemeyD. NimmoO. M. NeiraR. LacroixK. Matzen and C. Beech, Genetic control of Aedes mosquitoes, Pathogens and Global Health, 107 (2013), 170-179.  doi: 10.1179/2047773213Y.0000000095.  Google Scholar

[4]

N. H. Barton and M. Turelli, Spatial waves of advance with bistable dynamics: Cytoplasmic and genetic analogues of Allee effects, The American Naturalist, 178 (2011), E48-E75.  doi: 10.1086/661246.  Google Scholar

[5]

N. Barton and G. Hewitt, Adaptation, speciation and hybrid zones, Nature, 341 (1989), 497-503.  doi: 10.1038/341497a0.  Google Scholar

[6]

N. Barton and S. Rouhani, The probability of fixation of a new karyotype in a continuous population, Evolution, 45 (1991), 499-517.  doi: 10.1111/j.1558-5646.1991.tb04326.x.  Google Scholar

[7]

S. BhattP. W. GethingO. J. BradyJ. P. MessinaA. W. FarlowC. L. MoyesJ. M. DrakeJ. S. BrownsteinA. G. HoenO. SankohM. F. MyersD. B. GeorgeT. JaenischG. R. W. WintC. P. SimmonsT. W. ScottJ. J. Farrar and S. I. Hay, The global distribution and burden of dengue, Nature, 496 (2013), 504-507.  doi: 10.1038/nature12060.  Google Scholar

[8]

M. S. C. Blagrove, C. Arias-Goeta, C. Di Genua, A.-B. Failloux and S. P. Sinkins, A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits Chikungunya virus, PLoS Neglected Tropical Diseases, 7 (2013), e2152. doi: 10.1371/journal.pntd.0002152.  Google Scholar

[9]

M. H. T. Chan and P. S. Kim, Modeling a Wolbachia invasion using a slow-fast dispersal reaction-diffusion approach, Bulletin of Mathematical Biology, 75 (2013), 1501-1523.  doi: 10.1007/s11538-013-9857-y.  Google Scholar

[10]

P. R. Crain, J. W. Mains, E. Suh, Y. Huang, P. H. Crowley and S. L. Dobson, Wolbachia infections that reduce immature insect survival: Predicted impacts on population replacement, BMC Evolutionary Biology, 11 (2011), p290. doi: 10.1186/1471-2148-11-290.  Google Scholar

[11]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, Journal of the European Mathematical Society, 12 (2010), 279-312.  doi: 10.4171/JEMS/198.  Google Scholar

[12]

G. L. C. Dutra, L. M. B. dos Santos, E. P. Caragata, J. B. L. Silva, D. A. M. Villela, R. Maciel-de Freitas and L. A. Moreira, From Lab to Field: The influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes, PLoS Neglected Tropical Diseases, 9 (2015), e0003689. doi: 10.1371/journal.pntd.0003689.  Google Scholar

[13]

P. Erdos and A. Rényi, On a classical problem of probability theory, Magyar. Tud. Akad. Mat. Kutato Int. Kozl., 6 (1961), 215-220.   Google Scholar

[14]

A. FentonK. N. JohnsonJ. C. Brownlie and G. D. D. Hurst, Solving the Wolbachia paradox: Modeling the tripartite interaction between host, Wolbachia, and a natural enemy, The American Naturalist, 178 (2011), 333-342.  doi: 10.1086/661247.  Google Scholar

[15]

P. A. Hancock and H. C. J. Godfray, Modelling the spread of Wolbachia in spatially heterogeneous environments, Journal of The Royal Society Interface, 9 (2012), p253. doi: 10.1098/rsif.2012.0253.  Google Scholar

[16]

P. A. HancockS. P. Sinkins and H. C. J. Godfray, Population dynamic models of the spread of Wolbachia, The American Naturalist, 177 (2011), 323-333.  doi: 10.1086/658121.  Google Scholar

[17]

P. A. Hancock, S. P. Sinkins and H. C. J. Godfray, Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases, PLoS Neglected Tropical Diseases, 5 (2011), e1024. doi: 10.1371/journal.pntd.0001024.  Google Scholar

[18]

A. A. Hoffmann, I. Iturbe-Ormaetxe, A. G. Callahan, B. L. Phillips, K. Billington, J. K. Axford, B. Montgomery, A. P. Turley and S. L. O'Neill, Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations, PLoS Neglected Tropical Diseases, 8 (2014), e3115. doi: 10.1371/journal.pntd.0003115.  Google Scholar

[19]

A. A. HoffmannB. L. MontgomeryJ. PopoviciI. Iturbe-OrmaetxeP. H. JohnsonF. MuzziM. GreenfieldM. DurkanY. S. LeongY. DongH. CookJ. AxfordA. G. CallahanN. KennyC. OmodeiE. A. McGrawP. A. RyanS. A. RitchieM. Turelli and S. L. O'Neill, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 476 (2011), 454-457.  doi: 10.1038/nature10356.  Google Scholar

[20]

H. Hughes and N. F. Britton, Modeling the use of Wolbachia to control dengue fever transmission, Bulletin of Mathematical Biology, 75 (2013), 796-818.  doi: 10.1007/s11538-013-9835-4.  Google Scholar

[21]

V. A. JansenM. Turelli and H. C. J. Godfray, Stochastic spread of Wolbachia, Proceedings of the Royal Society of London B: Biological Sciences, 275 (2008), 2769-2776.  doi: 10.1098/rspb.2008.0914.  Google Scholar

[22]

K. N. Johnson, The impact of Wolbachia on virus infection in mosquitoes, Viruses, 7 (2015), 5705-5717.  doi: 10.3390/v7112903.  Google Scholar

[23]

R. Maciel-de FreitasR. Souza-SantosC. T. Codeço and R. Lourenço-de Oliveira, Influence of the spatial distribution of human hosts and large size containers on the dispersal of the mosquito Aedes aegypti within the first gonotrophic cycle, Medical and Veterinary Entomology, 24 (2010), 74-82.  doi: 10.1111/j.1365-2915.2009.00851.x.  Google Scholar

[24]

H. Matano and P. Poláčik, Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part i: A general quasiconvergence theorem and its consequences, Communications in Partial Differential Equations, 41 (2016), 785-811.  doi: 10.1080/03605302.2016.1156697.  Google Scholar

[25]

C. B. Muratov and X. Zhong, Threshold phenomena for symmetric-decreasing radial solutions of reaction-diffusion equations, Discrete and Continuous Dynamical Systems, 37 (2017), 915-944.  doi: 10.3934/dcds.2017038.  Google Scholar

[26]

T. H. Nguyen, H. L. Nguyen, T. Y. Nguyen, S. N. Vu, N. D. Tran, T. N. Le, Q. M. Vien, T. C. Bui, H. T. Le, S. Kutcher, T. P. Hurst, T. T. H. Duong, J. A. L. Jeffery, J. M. Darbro, B. H. Kay, I. Iturbe-Ormaetxe, J. Popovici, B. L. Montgomery, A. P. Turley, F. Zigterman, H. Cook, P. E. Cook, P. H. Johnson, P. A. Ryan, C. J. Paton, S. A. Ritchie, C. P. Simmons, S. L. O'Neill and A. A. Hoffmann, Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Parasites & Vectors, 8 (2015), p563. doi: 10.1186/s13071-015-1174-x.  Google Scholar

[27]

M. OteroN. Schweigmann and H. G. Solari, A stochastic spatial dynamical model for Aedes aegypti, Bulletin of Mathematical Biology, 70 (2008), 1297-1325.  doi: 10.1007/s11538-008-9300-y.  Google Scholar

[28]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, Journal of Differential Equations, 146 (1998), 121-156.  doi: 10.1006/jdeq.1998.3414.  Google Scholar

[29]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, Ⅱ, Journal of Differential Equations, 158 (1999), 94-151.  doi: 10.1016/S0022-0396(99)80020-5.  Google Scholar

[30]

P. Poláčik, Threshold solutions and sharp transitions for nonautonomous parabolic equations on $\mathbb{R}^N$, Archive for Rational Mechanics and Analysis, 199 (2011), 69-97.  doi: 10.1007/s00205-010-0316-8.  Google Scholar

[31]

S. Rouhani and N. Barton, Speciation and the ''Shifting Balance" in a continuous population, Theoretical Population Biology, 31 (1987), 465-492.  doi: 10.1016/0040-5809(87)90016-5.  Google Scholar

[32]

M. Strugarek and N. Vauchelet, Reduction to a single closed equation for 2 by 2 reaction-diffusion systems of Lotka-Volterra type, SIAM Journal on Applied Mathematics, 76 (2016), 2060-2080.  doi: 10.1137/16M1059217.  Google Scholar

[33]

M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64 (2010), 232-241.  doi: 10.1111/j.1558-5646.2009.00822.x.  Google Scholar

[34]

F. Vavre and S. Charlat, Making (good) use of Wolbachia: What the models say, Current Opinion in Microbiology, 15 (2012), 263-268.  doi: 10.1016/j.mib.2012.03.005.  Google Scholar

[35]

D. A. M. Villela, C. T. Codeço, F. Figueiredo, G. A. Garcia, R. Maciel-de Freitas and C. J. Struchiner, A Bayesian hierarchical model for estimation of abundance and spatial density of Aedes aegypti, PLoS ONE, 10 (2015), e0123794. doi: 10.1371/journal.pone.0123794.  Google Scholar

[36]

T. WalkerP. H. JohnsonL. A. MoreiraI. Iturbe-OrmaetxeF. D. FrentiuC. J. McMenimanY. S. LeongY. DongJ. AxfordP. KriesnerA. L. LloydS. A. RitchieS. L. O'Neill and A. A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450-453.  doi: 10.1038/nature10355.  Google Scholar

[37]

H. L. YeapP. MeeT. WalkerA. R. WeeksS. L. O'NeillP. JohnsonS. A. RitchieK. M. RichardsonC. DoigN. M. Endersby and A. A. Hoffmann, Dynamics of the "Popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control, Genetics, 187 (2011), 583-595.  doi: 10.1534/genetics.110.122390.  Google Scholar

[38]

H. L. YeapG. RasicN. M. Endersby-HarshmanS. F. LeeE. ArguniH. Le Nguyen and A. A. Hoffmann, Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations, Heredity, 116 (2016), 265-276.  doi: 10.1038/hdy.2015.97.  Google Scholar

[39]

B. ZhengM. TangJ. Yu and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, Journal of Mathematical Biology, 76 (2018), 235-263.  doi: 10.1007/s00285-017-1142-5.  Google Scholar

[40]

A. Zlatos, Sharp transition between extinction and propagation of reaction, Journal of the American Mathematical Society, 19 (2006), 251-263.  doi: 10.1090/S0894-0347-05-00504-7.  Google Scholar

show all references

References:
[1]

http://www.cdc.gov/zika/transmission/index.html, 2016. Google Scholar

[2]

L. Alphey, Genetic control of mosquitoes, Annual Review of Entomology, 59 (2014), 205-224.  doi: 10.1146/annurev-ento-011613-162002.  Google Scholar

[3]

L. AlpheyA. McKemeyD. NimmoO. M. NeiraR. LacroixK. Matzen and C. Beech, Genetic control of Aedes mosquitoes, Pathogens and Global Health, 107 (2013), 170-179.  doi: 10.1179/2047773213Y.0000000095.  Google Scholar

[4]

N. H. Barton and M. Turelli, Spatial waves of advance with bistable dynamics: Cytoplasmic and genetic analogues of Allee effects, The American Naturalist, 178 (2011), E48-E75.  doi: 10.1086/661246.  Google Scholar

[5]

N. Barton and G. Hewitt, Adaptation, speciation and hybrid zones, Nature, 341 (1989), 497-503.  doi: 10.1038/341497a0.  Google Scholar

[6]

N. Barton and S. Rouhani, The probability of fixation of a new karyotype in a continuous population, Evolution, 45 (1991), 499-517.  doi: 10.1111/j.1558-5646.1991.tb04326.x.  Google Scholar

[7]

S. BhattP. W. GethingO. J. BradyJ. P. MessinaA. W. FarlowC. L. MoyesJ. M. DrakeJ. S. BrownsteinA. G. HoenO. SankohM. F. MyersD. B. GeorgeT. JaenischG. R. W. WintC. P. SimmonsT. W. ScottJ. J. Farrar and S. I. Hay, The global distribution and burden of dengue, Nature, 496 (2013), 504-507.  doi: 10.1038/nature12060.  Google Scholar

[8]

M. S. C. Blagrove, C. Arias-Goeta, C. Di Genua, A.-B. Failloux and S. P. Sinkins, A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits Chikungunya virus, PLoS Neglected Tropical Diseases, 7 (2013), e2152. doi: 10.1371/journal.pntd.0002152.  Google Scholar

[9]

M. H. T. Chan and P. S. Kim, Modeling a Wolbachia invasion using a slow-fast dispersal reaction-diffusion approach, Bulletin of Mathematical Biology, 75 (2013), 1501-1523.  doi: 10.1007/s11538-013-9857-y.  Google Scholar

[10]

P. R. Crain, J. W. Mains, E. Suh, Y. Huang, P. H. Crowley and S. L. Dobson, Wolbachia infections that reduce immature insect survival: Predicted impacts on population replacement, BMC Evolutionary Biology, 11 (2011), p290. doi: 10.1186/1471-2148-11-290.  Google Scholar

[11]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, Journal of the European Mathematical Society, 12 (2010), 279-312.  doi: 10.4171/JEMS/198.  Google Scholar

[12]

G. L. C. Dutra, L. M. B. dos Santos, E. P. Caragata, J. B. L. Silva, D. A. M. Villela, R. Maciel-de Freitas and L. A. Moreira, From Lab to Field: The influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes, PLoS Neglected Tropical Diseases, 9 (2015), e0003689. doi: 10.1371/journal.pntd.0003689.  Google Scholar

[13]

P. Erdos and A. Rényi, On a classical problem of probability theory, Magyar. Tud. Akad. Mat. Kutato Int. Kozl., 6 (1961), 215-220.   Google Scholar

[14]

A. FentonK. N. JohnsonJ. C. Brownlie and G. D. D. Hurst, Solving the Wolbachia paradox: Modeling the tripartite interaction between host, Wolbachia, and a natural enemy, The American Naturalist, 178 (2011), 333-342.  doi: 10.1086/661247.  Google Scholar

[15]

P. A. Hancock and H. C. J. Godfray, Modelling the spread of Wolbachia in spatially heterogeneous environments, Journal of The Royal Society Interface, 9 (2012), p253. doi: 10.1098/rsif.2012.0253.  Google Scholar

[16]

P. A. HancockS. P. Sinkins and H. C. J. Godfray, Population dynamic models of the spread of Wolbachia, The American Naturalist, 177 (2011), 323-333.  doi: 10.1086/658121.  Google Scholar

[17]

P. A. Hancock, S. P. Sinkins and H. C. J. Godfray, Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases, PLoS Neglected Tropical Diseases, 5 (2011), e1024. doi: 10.1371/journal.pntd.0001024.  Google Scholar

[18]

A. A. Hoffmann, I. Iturbe-Ormaetxe, A. G. Callahan, B. L. Phillips, K. Billington, J. K. Axford, B. Montgomery, A. P. Turley and S. L. O'Neill, Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations, PLoS Neglected Tropical Diseases, 8 (2014), e3115. doi: 10.1371/journal.pntd.0003115.  Google Scholar

[19]

A. A. HoffmannB. L. MontgomeryJ. PopoviciI. Iturbe-OrmaetxeP. H. JohnsonF. MuzziM. GreenfieldM. DurkanY. S. LeongY. DongH. CookJ. AxfordA. G. CallahanN. KennyC. OmodeiE. A. McGrawP. A. RyanS. A. RitchieM. Turelli and S. L. O'Neill, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 476 (2011), 454-457.  doi: 10.1038/nature10356.  Google Scholar

[20]

H. Hughes and N. F. Britton, Modeling the use of Wolbachia to control dengue fever transmission, Bulletin of Mathematical Biology, 75 (2013), 796-818.  doi: 10.1007/s11538-013-9835-4.  Google Scholar

[21]

V. A. JansenM. Turelli and H. C. J. Godfray, Stochastic spread of Wolbachia, Proceedings of the Royal Society of London B: Biological Sciences, 275 (2008), 2769-2776.  doi: 10.1098/rspb.2008.0914.  Google Scholar

[22]

K. N. Johnson, The impact of Wolbachia on virus infection in mosquitoes, Viruses, 7 (2015), 5705-5717.  doi: 10.3390/v7112903.  Google Scholar

[23]

R. Maciel-de FreitasR. Souza-SantosC. T. Codeço and R. Lourenço-de Oliveira, Influence of the spatial distribution of human hosts and large size containers on the dispersal of the mosquito Aedes aegypti within the first gonotrophic cycle, Medical and Veterinary Entomology, 24 (2010), 74-82.  doi: 10.1111/j.1365-2915.2009.00851.x.  Google Scholar

[24]

H. Matano and P. Poláčik, Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part i: A general quasiconvergence theorem and its consequences, Communications in Partial Differential Equations, 41 (2016), 785-811.  doi: 10.1080/03605302.2016.1156697.  Google Scholar

[25]

C. B. Muratov and X. Zhong, Threshold phenomena for symmetric-decreasing radial solutions of reaction-diffusion equations, Discrete and Continuous Dynamical Systems, 37 (2017), 915-944.  doi: 10.3934/dcds.2017038.  Google Scholar

[26]

T. H. Nguyen, H. L. Nguyen, T. Y. Nguyen, S. N. Vu, N. D. Tran, T. N. Le, Q. M. Vien, T. C. Bui, H. T. Le, S. Kutcher, T. P. Hurst, T. T. H. Duong, J. A. L. Jeffery, J. M. Darbro, B. H. Kay, I. Iturbe-Ormaetxe, J. Popovici, B. L. Montgomery, A. P. Turley, F. Zigterman, H. Cook, P. E. Cook, P. H. Johnson, P. A. Ryan, C. J. Paton, S. A. Ritchie, C. P. Simmons, S. L. O'Neill and A. A. Hoffmann, Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Parasites & Vectors, 8 (2015), p563. doi: 10.1186/s13071-015-1174-x.  Google Scholar

[27]

M. OteroN. Schweigmann and H. G. Solari, A stochastic spatial dynamical model for Aedes aegypti, Bulletin of Mathematical Biology, 70 (2008), 1297-1325.  doi: 10.1007/s11538-008-9300-y.  Google Scholar

[28]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, Journal of Differential Equations, 146 (1998), 121-156.  doi: 10.1006/jdeq.1998.3414.  Google Scholar

[29]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, Ⅱ, Journal of Differential Equations, 158 (1999), 94-151.  doi: 10.1016/S0022-0396(99)80020-5.  Google Scholar

[30]

P. Poláčik, Threshold solutions and sharp transitions for nonautonomous parabolic equations on $\mathbb{R}^N$, Archive for Rational Mechanics and Analysis, 199 (2011), 69-97.  doi: 10.1007/s00205-010-0316-8.  Google Scholar

[31]

S. Rouhani and N. Barton, Speciation and the ''Shifting Balance" in a continuous population, Theoretical Population Biology, 31 (1987), 465-492.  doi: 10.1016/0040-5809(87)90016-5.  Google Scholar

[32]

M. Strugarek and N. Vauchelet, Reduction to a single closed equation for 2 by 2 reaction-diffusion systems of Lotka-Volterra type, SIAM Journal on Applied Mathematics, 76 (2016), 2060-2080.  doi: 10.1137/16M1059217.  Google Scholar

[33]

M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64 (2010), 232-241.  doi: 10.1111/j.1558-5646.2009.00822.x.  Google Scholar

[34]

F. Vavre and S. Charlat, Making (good) use of Wolbachia: What the models say, Current Opinion in Microbiology, 15 (2012), 263-268.  doi: 10.1016/j.mib.2012.03.005.  Google Scholar

[35]

D. A. M. Villela, C. T. Codeço, F. Figueiredo, G. A. Garcia, R. Maciel-de Freitas and C. J. Struchiner, A Bayesian hierarchical model for estimation of abundance and spatial density of Aedes aegypti, PLoS ONE, 10 (2015), e0123794. doi: 10.1371/journal.pone.0123794.  Google Scholar

[36]

T. WalkerP. H. JohnsonL. A. MoreiraI. Iturbe-OrmaetxeF. D. FrentiuC. J. McMenimanY. S. LeongY. DongJ. AxfordP. KriesnerA. L. LloydS. A. RitchieS. L. O'Neill and A. A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450-453.  doi: 10.1038/nature10355.  Google Scholar

[37]

H. L. YeapP. MeeT. WalkerA. R. WeeksS. L. O'NeillP. JohnsonS. A. RitchieK. M. RichardsonC. DoigN. M. Endersby and A. A. Hoffmann, Dynamics of the "Popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control, Genetics, 187 (2011), 583-595.  doi: 10.1534/genetics.110.122390.  Google Scholar

[38]

H. L. YeapG. RasicN. M. Endersby-HarshmanS. F. LeeE. ArguniH. Le Nguyen and A. A. Hoffmann, Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations, Heredity, 116 (2016), 265-276.  doi: 10.1038/hdy.2015.97.  Google Scholar

[39]

B. ZhengM. TangJ. Yu and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, Journal of Mathematical Biology, 76 (2018), 235-263.  doi: 10.1007/s00285-017-1142-5.  Google Scholar

[40]

A. Zlatos, Sharp transition between extinction and propagation of reaction, Journal of the American Mathematical Society, 19 (2006), 251-263.  doi: 10.1090/S0894-0347-05-00504-7.  Google Scholar

Figure 1.  Profile of $f$ defined in (2) (left) and of its anti-derivative $F$ (right) with parameters given by (5).
Figure 2.  Time dynamics with three different initial releases belonging to the set $RP_{50}^2(N)$ of (10), with $N/(N+N_0) = 0.75$. Integration is performed on the domain $[-L, L]$ with $L = 50 \textrm{km}$. The release box is plotted in dashed red on the first picture of each configuration. Left: Release box $[-2 L/3, 2 L/3]^2$. Center: Release box $[-L/2, L/2]^2$. Right: Release box $[-L/12.5, L/12.5]^2$. From top to bottom: increasing time $t \in \{0, 1, 25, 50, 75\}$, in days. The color indicates the value of $p$ (with the scale on the right).
Figure 3.  Comparison of minimal invasion radii $R_{\alpha}$ (obtained by energy) in dashed line and $L_{\alpha}$ (obtained by critical bubbles) in solid line, varying with the maximal infection frequency level $\alpha$. The scale is such that $\sigma=1$.
Figure 4.  Two $G_{\sigma}$ profiles and their sum (in thick line). The level $G_{\sigma} (0)$ is the dashed line. On the left, $h=\sqrt{2\log(2)\sigma}$. On the right, $h>\sqrt{2\log(2)\sigma}$.
Figure 5.  Under-estimation $\beta^{\lambda, R^*} (-L, L)$ of introduction success probability for $L$ ranging from $R^*/2 = 5.49$ to $3 R^*/2 = 16.47$. The seven curves correspond to increasing number of release points. (From bottom to top: $20$ to $80$ release points).
Figure 6.  Effect of losing the constant $2 \sqrt{2 \log(2)}$ in Proposition 6: under-estimation $\beta^{\lambda, R^*} (-L, L)$ of introduction success probability for $L$ ranging from $R^*/2 = 5.49$ to $3 R^*/2 = 16.47$, with $80$ release points.
[1]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[2]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[3]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[4]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[5]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[6]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[7]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[8]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[9]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[10]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[11]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[12]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[13]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[14]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[15]

Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135

[16]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[17]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[18]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[19]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[20]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (154)
  • HTML views (274)
  • Cited by (0)

[Back to Top]