# American Institute of Mathematical Sciences

December  2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060

## Dynamical analysis for a hepatitis B transmission model with immigration and infection age

 1 School of Science, Xi'an University of Technology, Xi'an 710048, China 2 Department of Mathematics and Statistics, The University of Ottawa, 585 King Edward Ave, Ottawa, ON K1N 6N5, Canada 3 Department of Mathematics and Faculty of Medicine, The University of Ottawa, 585 King Edward Ave, Ottawa, ON K1N 6N5, Canada

* Corresponding author: Robert Smith?

Received  July 14, 2017 Accepted  July 11, 2018 Published  September 2018

Fund Project: SZ was supported by the National Science Foundation of China (Grant numbers 11501443, 11571275 and 11701445). RS? is supported by an NSERC Discovery Grant.

Hepatitis B virus (HBV) is responsible for an estimated 378 million infections worldwide and 620, 000 deaths annually. Safe and effective vaccination programs have been available for decades, but coverage is limited due to economic and social factors. We investigate the effect of immigration and infection age on HBV transmission dynamics, incorporating age-dependent immigration flow and vertical transmission. The mathematical model can be used to describe HBV transmission in highly endemic regions with vertical transmission and migration of infected HBV individuals. Due to the effects of immigration, there is no disease-free equilibrium or reproduction number. We show that the unique endemic equilibrium exists only when immigration into the infective class is measurable. The smoothness and attractiveness of the solution semiflow are analyzed, and boundedness and uniform persistence are determined. Global stability of the unique endemic equilibrium is shown by a Lyapunov functional for a special case.

Citation: Suxia Zhang, Hongbin Guo, Robert Smith?. Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1291-1313. doi: 10.3934/mbe.2018060
##### References:

show all references

##### References:
Flow diagram of the age-structured HBV transmission model (1)
Definitions of parameters used in model (1)
 Symbol Definition $\Lambda_S$ rate of recruitment into the susceptible compartment, including unsuccessfully immunized birth and immigration $\Lambda_k$ immigration rate into class $k$ ($k=E, R$) $\Lambda_j(a)$ age-dependent immigration rate into class $j$ ($j=i, c$) $\mu_k$ per capital death rate for class $k$ ($k=S, E, R$) $\mu_j(a)$ age-dependent death rate for class $j$ ($j=i, c$) $b$ birth rate $\omega$ proportion of newborns who are unsuccessfully immunized $\sigma$ transfer rate from exposed to acute infection $p$ vaccination rate $\alpha$ degree of infectiousness of carriers relative to acute infections ($\alpha>0$) $\beta(a)$ age-dependent transmission coefficient $v(a)$ age-dependent rate of children born to carrier mothers who become HBV carriers $\gamma_1(a)$ age-dependent transfer rate from acute to immunized or carrier class $\gamma_2(a)$ age-dependent transfer rate from carrier to immunized class $q(a)$ age-dependent progression from acute infection to carrier class $\theta(a)$ age-dependent HBV-induced death rate
 Symbol Definition $\Lambda_S$ rate of recruitment into the susceptible compartment, including unsuccessfully immunized birth and immigration $\Lambda_k$ immigration rate into class $k$ ($k=E, R$) $\Lambda_j(a)$ age-dependent immigration rate into class $j$ ($j=i, c$) $\mu_k$ per capital death rate for class $k$ ($k=S, E, R$) $\mu_j(a)$ age-dependent death rate for class $j$ ($j=i, c$) $b$ birth rate $\omega$ proportion of newborns who are unsuccessfully immunized $\sigma$ transfer rate from exposed to acute infection $p$ vaccination rate $\alpha$ degree of infectiousness of carriers relative to acute infections ($\alpha>0$) $\beta(a)$ age-dependent transmission coefficient $v(a)$ age-dependent rate of children born to carrier mothers who become HBV carriers $\gamma_1(a)$ age-dependent transfer rate from acute to immunized or carrier class $\gamma_2(a)$ age-dependent transfer rate from carrier to immunized class $q(a)$ age-dependent progression from acute infection to carrier class $\theta(a)$ age-dependent HBV-induced death rate
 [1] Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689 [2] Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infection-age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1329-1346. doi: 10.3934/dcdsb.2016.21.1329 [3] Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859 [4] Yicang Zhou, Zhien Ma. Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409-425. doi: 10.3934/mbe.2009.6.409 [5] C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008 [6] Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449 [7] Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283-299. doi: 10.3934/mbe.2009.6.283 [8] Cameron Browne. Immune response in virus model structured by cell infection-age. Mathematical Biosciences & Engineering, 2016, 13 (5) : 887-909. doi: 10.3934/mbe.2016022 [9] Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an age-structured virus infection model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 861-885. doi: 10.3934/dcdsb.2018046 [10] Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369 [11] Cameron J. Browne, Sergei S. Pilyugin. Global analysis of age-structured within-host virus model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 1999-2017. doi: 10.3934/dcdsb.2013.18.1999 [12] Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641 [13] Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060 [14] Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026 [15] Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643 [16] Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186 [17] Fred Brauer. Age-of-infection and the final size relation. Mathematical Biosciences & Engineering, 2008, 5 (4) : 681-690. doi: 10.3934/mbe.2008.5.681 [18] Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1335-1349. doi: 10.3934/mbe.2013.10.1335 [19] Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227-247. doi: 10.3934/mbe.2016.13.227 [20] Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155

2018 Impact Factor: 1.313