# American Institute of Mathematical Sciences

December  2018, 15(6): 1401-1423. doi: 10.3934/mbe.2018064

## Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components

 1 School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China 2 Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1904, USA 3 Sciences and Mathematics Faculty, College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA

* Corresponding author: Yun Kang

Received  December 10, 2017 Accepted  June 10, 2018 Published  September 2018

This paper investigates the complex dynamics of a Harrison-type predator-prey model that incorporating: (1) A constant time delay in the functional response term of the predator growth equation; and (2) environmental noise in both prey and predator equations. We provide the rigorous results of our model including the dynamical behaviors of a positive solution and Hopf bifurcation. We also perform numerical simulations on the effects of delay or/and noise when the corresponding ODE model has an interior solution. Our theoretical and numerical results show that delay can either remain stability or destabilize the model; large noise could destabilize the model; and the combination of delay and noise could intensify the periodic instability of the model. Our results may provide us useful biological insights into population managements for prey-predator interaction models.

Citation: Feng Rao, Carlos Castillo-Chavez, Yun Kang. Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1401-1423. doi: 10.3934/mbe.2018064
##### References:

show all references

##### References:
Phase portrait of model (2) and the parameters are taken as $c = 0.9, \, b = 0.7, \, d = 0.3, \, m = 0.1$. The horizontal axis is prey population $N$ and the vertical axis is predator population $P$. The red dotted curve is the $N$-isoline $cP = (1-N)(mP+1)$ and the yellow solid curve is the $P$-isoline $bN = d(mP+1)$. Both $E_0 = (0, 0)$ and $E_1 = (1, 0)$ are saddle points, $E^* = (0.46, 0.64)$ is locally asymptotically stable
The effects of the time delay $\tau$ on the dynamics of the DDE model (4) when $c = 0.9, \, b = 0.7, \, d = 0.3, \, m = 0.1$ which are the same as in Fig. 1. In the figures of time series, the red curve is the population of $N$ and the blue curve is the population of $P$
Time-series plots of model (3) without time-delay and only with different noises $\sigma_1, \, \sigma_2$, and other parametric values are $\tau = 0, \, c = 0.9, \, b = 0.7, \, d = 0.3, \, m = 0.1$
Time-series plots of the SDDE model (3) for different noise $\sigma_1, \, \sigma_2$ with time delay $\tau = 2.8 < \tau_0 = 3.46$, other parametric values are given as (16)
Time-series plots of the SDDE model (3) for different noise $\sigma_1, \, \sigma_2$ with $\tau = 3.9>\tau_0 = 3.46$, other parametric values are given as (16)
The existence and stability of equilibria for model (2) where $N^* = \frac{b(m-c)+\sqrt{4bcdm+b^2(m-c)^2}}{2bm}, \, P^* = \frac{bN^*-d}{dm}$
 Equilibrium Existence Condition Stability Condition $(0, 0)$ Always exists Always saddle $(1, 0)$ Always exists Sink if $d\geq b$; Saddle if $d < b$ $(N^*, P^*)$ $d < b$ Always sink
 Equilibrium Existence Condition Stability Condition $(0, 0)$ Always exists Always saddle $(1, 0)$ Always exists Sink if $d\geq b$; Saddle if $d < b$ $(N^*, P^*)$ $d < b$ Always sink
 [1] Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045 [2] Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507 [3] Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020259 [4] Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979 [5] Meng Liu, Chuanzhi Bai, Yi Jin. Population dynamical behavior of a two-predator one-prey stochastic model with time delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2513-2538. doi: 10.3934/dcds.2017108 [6] Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031 [7] Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737 [8] Meng Zhao, Wan-Tong Li, Jia-Feng Cao. A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3295-3316. doi: 10.3934/dcdsb.2017138 [9] R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423 [10] Malay Banerjee, Nayana Mukherjee, Vitaly Volpert. Prey-predator model with nonlocal and global consumption in the prey dynamics. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2109-2120. doi: 10.3934/dcdss.2020180 [11] Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244 [12] Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 [13] Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173 [14] Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536 [15] Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061 [16] Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002 [17] Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095 [18] J. Gani, R. J. Swift. Prey-predator models with infected prey and predators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5059-5066. doi: 10.3934/dcds.2013.33.5059 [19] Tomás Caraballo, Renato Colucci, Luca Guerrini. On a predator prey model with nonlinear harvesting and distributed delay. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2703-2727. doi: 10.3934/cpaa.2018128 [20] Komi Messan, Yun Kang. A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 947-976. doi: 10.3934/dcdsb.2017048

2018 Impact Factor: 1.313