\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction

Abstract / Introduction Related Papers Cited by
  • We consider the isothermal Euler equations with friction that model the gas flow through pipes. We present a method of time-delayed boundary feedback stabilization to stabilize the isothermal Euler equations locally around a given stationary subcritical state on a finite time interval. The considered control system is a quasilinear hyperbolic system with a source term. For this system we introduce a Lyapunov function with delay terms and develop time-delayed boundary controls for which the Lyapunov function decays exponentially with time. We present the stabilization method for a single gas pipe and for a star-shaped network of pipes.
    Mathematics Subject Classification: 76N25, 35L50, 93C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.doi: 10.3934/nhm.2006.1.295.

    [2]

    M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.doi: 10.3934/nhm.2006.1.41.

    [3]

    J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines, Research Report, available at Centre de recherche INRIA Saclay, January 7, 2009.

    [4]

    R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.doi: 10.1137/080716372.

    [5]

    J.-M. Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.

    [6]

    J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11.doi: 10.1109/TAC.2006.887903.

    [7]

    M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Netw. Heterog. Media, 5 (2010), 691-709.

    [8]

    M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, Adv. Model. Optim., 7 (2005), 9-37.

    [9]

    M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations, IMA J. Math. Control Inform., 27 (2010), 189-203.doi: 10.1093/imamci/dnq007.

    [10]

    M. Gugat, Stabilizing a vibrating string by time delay, in "15th International Conference on Methods and Models in Automation and Robotics (MMAR)," Miedzyzdroje, August 23-26, (2010), 144-147.doi: 10.1109/MMAR.2010.5587248.

    [11]

    M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM Control Optim. Calc. Var., 17 (2011), 28-51.doi: 10.1051/cocv/2009035.

    [12]

    M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand, Math. Methods Appl. Sci., 34 (2011), 745-757.doi: 10.1002/mma.1394.

    [13]

    M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization, Netw. Heterog. Media, 5 (2010), 299-314.doi: 10.3934/nhm.2010.5.299.

    [14]

    M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.

    [15]

    M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks, Netw. Heterog. Media, 2 (2007), 733-750.doi: 10.3934/nhm.2007.2.733.

    [16]

    T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems," AIMS Series on Applied Mathematics, 3, American Institute of Mathematical Sciences, Springfield, MO, Higher Education Press, Beijing, 2010.

    [17]

    T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 243-257.doi: 10.3934/dcds.2010.28.243.

    [18]

    A. MarigoEntropic solutions for irrigation networks, SIAM J. Appl. Math., 70 (2009/10), 1711-1735. doi: 10.1137/09074783X.

    [19]

    S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, 2 (2007), 425-479.doi: 10.3934/nhm.2007.2.425.

    [20]

    S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559-581.doi: 10.3934/dcdss.2009.2.559.

    [21]

    A. Osiadacz, "Simulation and Analysis of Gas Networks," Gulf Publishing Company, Houston, 1987.

    [22]

    A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models, Chemical Engineering J., 81 (2001), 41-51.doi: 10.1016/S1385-8947(00)00194-7.

    [23]

    M. C. Steinbach, On PDE solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361.doi: 10.1016/j.cam.2006.04.018.

    [24]

    J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009), 2771-2797.doi: 10.1137/080733590.

    [25]

    J.-M. Wang, B.-Z. Guo and M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time, SIAM J. Control Optim., 49 (2011), 517-554.doi: 10.1137/100796261.

    [26]

    Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chinese Ann. Math. Ser. B, 27 (2006), 643-656.doi: 10.1007/s11401-005-0520-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(197) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return