Advanced Search
Article Contents
Article Contents

Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction

Abstract / Introduction Related Papers Cited by
  • We consider the isothermal Euler equations with friction that model the gas flow through pipes. We present a method of time-delayed boundary feedback stabilization to stabilize the isothermal Euler equations locally around a given stationary subcritical state on a finite time interval. The considered control system is a quasilinear hyperbolic system with a source term. For this system we introduce a Lyapunov function with delay terms and develop time-delayed boundary controls for which the Lyapunov function decays exponentially with time. We present the stabilization method for a single gas pipe and for a star-shaped network of pipes.
    Mathematics Subject Classification: 76N25, 35L50, 93C20.


    \begin{equation} \\ \end{equation}
  • [1]

    M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.doi: 10.3934/nhm.2006.1.295.


    M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.doi: 10.3934/nhm.2006.1.41.


    J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines, Research Report, available at Centre de recherche INRIA Saclay, January 7, 2009.


    R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.doi: 10.1137/080716372.


    J.-M. Coron, "Control and Nonlinearity," Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.


    J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11.doi: 10.1109/TAC.2006.887903.


    M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Netw. Heterog. Media, 5 (2010), 691-709.


    M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives, Adv. Model. Optim., 7 (2005), 9-37.


    M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations, IMA J. Math. Control Inform., 27 (2010), 189-203.doi: 10.1093/imamci/dnq007.


    M. Gugat, Stabilizing a vibrating string by time delay, in "15th International Conference on Methods and Models in Automation and Robotics (MMAR)," Miedzyzdroje, August 23-26, (2010), 144-147.doi: 10.1109/MMAR.2010.5587248.


    M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM Control Optim. Calc. Var., 17 (2011), 28-51.doi: 10.1051/cocv/2009035.


    M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand, Math. Methods Appl. Sci., 34 (2011), 745-757.doi: 10.1002/mma.1394.


    M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization, Netw. Heterog. Media, 5 (2010), 299-314.doi: 10.3934/nhm.2010.5.299.


    M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks, Math. Methods Appl. Sci., 33 (2010), 845-855.


    M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks, Netw. Heterog. Media, 2 (2007), 733-750.doi: 10.3934/nhm.2007.2.733.


    T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems," AIMS Series on Applied Mathematics, 3, American Institute of Mathematical Sciences, Springfield, MO, Higher Education Press, Beijing, 2010.


    T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 243-257.doi: 10.3934/dcds.2010.28.243.


    A. MarigoEntropic solutions for irrigation networks, SIAM J. Appl. Math., 70 (2009/10), 1711-1735. doi: 10.1137/09074783X.


    S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, 2 (2007), 425-479.doi: 10.3934/nhm.2007.2.425.


    S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559-581.doi: 10.3934/dcdss.2009.2.559.


    A. Osiadacz, "Simulation and Analysis of Gas Networks," Gulf Publishing Company, Houston, 1987.


    A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models, Chemical Engineering J., 81 (2001), 41-51.doi: 10.1016/S1385-8947(00)00194-7.


    M. C. Steinbach, On PDE solution in transient optimization of gas networks, J. Comput. Appl. Math., 203 (2007), 345-361.doi: 10.1016/j.cam.2006.04.018.


    J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009), 2771-2797.doi: 10.1137/080733590.


    J.-M. Wang, B.-Z. Guo and M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time, SIAM J. Control Optim., 49 (2011), 517-554.doi: 10.1137/100796261.


    Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems, Chinese Ann. Math. Ser. B, 27 (2006), 643-656.doi: 10.1007/s11401-005-0520-2.

  • 加载中

Article Metrics

HTML views() PDF downloads(197) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint