2011, 1(4): 509-518. doi: 10.3934/mcrf.2011.1.509

Inverse source problem with a final overdetermination for a fractional diffusion equation

1. 

Mathematical Science & Technology Research Lab, Advanced Technology Research Laboratories, Technical Development Bureau, Nippon Steel Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511, Japan

2. 

Department of Mathematical Sciences, The University of Tokyo, Komaba Meguro Tokyo 153-8914

Received  December 2010 Revised  May 2011 Published  November 2011

For a time fractional diffusion equation with source term, we discuss an inverse problem of determining a spatially varying function of the source by final overdetermining data. We prove that this inverse problem is well-posed in the Hadamard sense except for a discrete set of values of diffusion constants.
Citation: Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509
References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).

[2]

M. Choulli and M. Yamamoto, An inverse parabolic problem with non-zero initial condition,, Inverse Problems, 13 (1997), 19. doi: 10.1088/0266-5611/13/1/003.

[3]

M. Choulli and M. Yamamoto, Generic well-posedness of an inverse parabolic problem--the Hölder-space approach,, Inverse Problems, 12 (1996), 195. doi: 10.1088/0266-5611/12/3/002.

[4]

M. Choulli and M. Yamamoto, Generic well-posedness of a linear inverse parabolic problem with diffusion parameters,, J. Inverse Ill-Posed Problems, 7 (1999), 241. doi: 10.1515/jiip.1999.7.3.241.

[5]

M. Ginoa, S. Gerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials,, Physica A, 191 (1992), 449. doi: 10.1016/0378-4371(92)90566-9.

[6]

R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order,, Fractals and Fractional Calculus in Continuum Mechanics. (Edited by A. Carpinteri, (1997), 223.

[7]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lec. Notes in Math. 840, (1981).

[8]

K. H. Hoffmann and M. Yamamoto, Generic uniqueness and stability in some inverse parabolic problem,, in, 422 (1993), 49.

[9]

V. Isakov, Inverse parabolic problems with the final overdetermination,, Comm. Pure Appl. Math., 44 (1991), 185. doi: 10.1002/cpa.3160440203.

[10]

F. John, "Partial Differential Equations,", Springer-Verlag, (1982).

[11]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1976).

[12]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, "Theory and Applications of Fractional Differential Equations,", Elsevier, (2006).

[13]

F. Mainardi, On the initial value problem for the fractional diffusion-wave equation,, Waves and Stability in Continuous Media, (1994), 246.

[14]

F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation,, Appl. Math. Lett., 9 (1996), 23. doi: 10.1016/0893-9659(96)00089-4.

[15]

F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics,, Fractals and Fractional Calculus in Continuum Mechanics. (Edited by A. Carpinteri, (1997), 291.

[16]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry,, Phys. Stat. Sol. B, 133 (1986), 425. doi: 10.1002/pssb.2221330150.

[17]

K. B. Oldham and J. Spanier, "The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order,", Academic Press, (1974).

[18]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).

[19]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, "Methods for Solving Inverse Problems in Mathematical Physics,", Marcel Dekker, (2000).

[20]

J. Prüss, "Evolutionary Integral Equations and Applications,", Birkhäuser, (1993).

[21]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation,, J. Phys. A, 27 (1994), 3407. doi: 10.1088/0305-4470/27/10/017.

[22]

K. Sakamoto, "Inverse Source Problems for Diffusion Equations,", Ph.D. Thesis, (2010).

[23]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426. doi: 10.1016/j.jmaa.2011.04.058.

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).

[2]

M. Choulli and M. Yamamoto, An inverse parabolic problem with non-zero initial condition,, Inverse Problems, 13 (1997), 19. doi: 10.1088/0266-5611/13/1/003.

[3]

M. Choulli and M. Yamamoto, Generic well-posedness of an inverse parabolic problem--the Hölder-space approach,, Inverse Problems, 12 (1996), 195. doi: 10.1088/0266-5611/12/3/002.

[4]

M. Choulli and M. Yamamoto, Generic well-posedness of a linear inverse parabolic problem with diffusion parameters,, J. Inverse Ill-Posed Problems, 7 (1999), 241. doi: 10.1515/jiip.1999.7.3.241.

[5]

M. Ginoa, S. Gerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials,, Physica A, 191 (1992), 449. doi: 10.1016/0378-4371(92)90566-9.

[6]

R. Gorenflo and F. Mainardi, Fractional calculus: Integral and differential equations of fractional order,, Fractals and Fractional Calculus in Continuum Mechanics. (Edited by A. Carpinteri, (1997), 223.

[7]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lec. Notes in Math. 840, (1981).

[8]

K. H. Hoffmann and M. Yamamoto, Generic uniqueness and stability in some inverse parabolic problem,, in, 422 (1993), 49.

[9]

V. Isakov, Inverse parabolic problems with the final overdetermination,, Comm. Pure Appl. Math., 44 (1991), 185. doi: 10.1002/cpa.3160440203.

[10]

F. John, "Partial Differential Equations,", Springer-Verlag, (1982).

[11]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1976).

[12]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, "Theory and Applications of Fractional Differential Equations,", Elsevier, (2006).

[13]

F. Mainardi, On the initial value problem for the fractional diffusion-wave equation,, Waves and Stability in Continuous Media, (1994), 246.

[14]

F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation,, Appl. Math. Lett., 9 (1996), 23. doi: 10.1016/0893-9659(96)00089-4.

[15]

F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics,, Fractals and Fractional Calculus in Continuum Mechanics. (Edited by A. Carpinteri, (1997), 291.

[16]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry,, Phys. Stat. Sol. B, 133 (1986), 425. doi: 10.1002/pssb.2221330150.

[17]

K. B. Oldham and J. Spanier, "The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order,", Academic Press, (1974).

[18]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).

[19]

A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, "Methods for Solving Inverse Problems in Mathematical Physics,", Marcel Dekker, (2000).

[20]

J. Prüss, "Evolutionary Integral Equations and Applications,", Birkhäuser, (1993).

[21]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation,, J. Phys. A, 27 (1994), 3407. doi: 10.1088/0305-4470/27/10/017.

[22]

K. Sakamoto, "Inverse Source Problems for Diffusion Equations,", Ph.D. Thesis, (2010).

[23]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems,, J. Math. Anal. Appl., 382 (2011), 426. doi: 10.1016/j.jmaa.2011.04.058.

[1]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[2]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[3]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[4]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[5]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[6]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[7]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

[8]

Gabriela Marinoschi. Well posedness of a time-difference scheme for a degenerate fast diffusion problem. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 435-454. doi: 10.3934/dcdsb.2010.13.435

[9]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[10]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[11]

I. Baldomá, Tere M. Seara. The inner equation for generic analytic unfoldings of the Hopf-zero singularity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 323-347. doi: 10.3934/dcdsb.2008.10.323

[12]

Hui Huang, Jian-Guo Liu. Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinetic & Related Models, 2016, 9 (4) : 715-748. doi: 10.3934/krm.2016013

[13]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[14]

Junxiong Jia, Jigen Peng, Jinghuai Gao, Yujiao Li. Backward problem for a time-space fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (3) : 773-799. doi: 10.3934/ipi.2018033

[15]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[16]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[17]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[18]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[19]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[20]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]