• Previous Article
    Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain
  • MCRF Home
  • This Issue
  • Next Article
    Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential
2011, 1(1): 83-118. doi: 10.3934/mcrf.2011.1.83

A deterministic linear quadratic time-inconsistent optimal control problem

1. 

Department of Mathematics, University of Central Florida, Orlando, FL 32816

Received  October 2010 Revised  November 2010 Published  March 2011

A time-inconsistent optimal control problem is formulated and studied for a controlled linear ordinary differential equation with a quadratic cost functional. A notion of time-consistent equilibrium strategy is introduced for the original time-inconsistent problem. Under certain conditions, we construct an equilibrium strategy which can be represented via a Riccati--Volterra integral equation system. Our approach is based on a study of multi-person hierarchical differential games.
Citation: Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control & Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83
References:
[1]

S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation,, Preprint, (2008).

[2]

L. D. Berkovitz, "Optimal Control Theory,", Applied Mathematical Sciences, 12 (1974).

[3]

T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochasitc control problem,, working paper., ().

[4]

E. V. Böhm-Bawerk, "The Positive Theory of Capital,", Books for Libraries Press, (1891).

[5]

I. Ekeland and A. Lazrak, Being serious about non-commitment: subgame perfect equilibrium in continuous time,, preprint, (2008).

[6]

I. Ekeland and T. Privu, Investment and consumption without commitment,, preprint, (2007).

[7]

S. M. Goldman, Consistent plans,, Review of Economic Studies, 47 (1980), 533. doi: 10.2307/2297304.

[8]

S. R. Grenadier and N. Wang, Investment under uncertainty and time-inconsistent preferences,, preprint., ().

[9]

P. J. Herings and K. I. M. Rohde, Time-inconsistent preferences in a general equilibriub model,, preprint., ().

[10]

D. Hume, "A Treatise of Human Nature,", First Edition, (1739).

[11]

W. S. Jevons, "Theory of Political Economy,", Mcmillan, (1871).

[12]

P. Krusell and A. A. Smith, Jr., Consumption and saving decisions with quasi-geometric discounting,, Econometrica, 71 (2003), 366. doi: 10.1111/1468-0262.00400.

[13]

D. Laibson, Golden eggs and hyperbolic discounting,, Quarterly J. Econ., 112 (1997), 443. doi: 10.1162/003355397555253.

[14]

A. Malthus, An essay on the principle of population, 1826,, in, 2 (1986).

[15]

J. Marin-Solano and J. Navas, Non-constant discounting in finite horizon: The free terminal time case,, J. Economic Dynamics and Control, 33 (2009), 666. doi: 10.1016/j.jedc.2008.08.008.

[16]

A. Marshall, "Principles of Economics,", 1st ed., (1890).

[17]

M. Miller and M. Salmon, Dynamic games and the time inconsistency of optimal policy in open economics,, The Economic Journal, 95 (1985), 124. doi: 10.2307/2232876.

[18]

I. Palacios-Huerta, Time-inconsistent preferences in Adam Smith and Davis Hume,, History of Political Economy, 35 (2003), 241. doi: 10.1215/00182702-35-2-241.

[19]

V. Pareto, "Manuel d'économie Politique,", Girard and Brieve, (1909).

[20]

B. Peleg and M. E. Yaari, On the existence of a consistent course of action when tastes are changing,, Review of Economic Studies, 40 (1973), 391. doi: 10.2307/2296458.

[21]

R. A. Pollak, Consistent planning,, Review of Economic Studies, 35 (1968), 185. doi: 10.2307/2296548.

[22]

A. Smith, "The Theory of Moral Sentiments,", First Edition, (1759).

[23]

R. H. Strotz, Myopia and inconsistency in dynamic utility maximization,, Review of Econ. Studies, 23 (1955), 165. doi: 10.2307/2295722.

[24]

L. Tesfatsion, Time inconsistency of benevolent government economics,, J. Public Economics, 31 (1986), 25. doi: 10.1016/0047-2727(86)90070-8.

[25]

J. Yong, A deterministic time-inconsistent optimal control problem -- An essentially cooperative approach,, Acta Appl. Math. Sinica, ().

[26]

J. Yong, and X. Y. Zhou, "Stochastic Controls: Hamiltonian Systems and HJB Equations,", Applications of Mathematics (New York), (1999).

show all references

References:
[1]

S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation,, Preprint, (2008).

[2]

L. D. Berkovitz, "Optimal Control Theory,", Applied Mathematical Sciences, 12 (1974).

[3]

T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochasitc control problem,, working paper., ().

[4]

E. V. Böhm-Bawerk, "The Positive Theory of Capital,", Books for Libraries Press, (1891).

[5]

I. Ekeland and A. Lazrak, Being serious about non-commitment: subgame perfect equilibrium in continuous time,, preprint, (2008).

[6]

I. Ekeland and T. Privu, Investment and consumption without commitment,, preprint, (2007).

[7]

S. M. Goldman, Consistent plans,, Review of Economic Studies, 47 (1980), 533. doi: 10.2307/2297304.

[8]

S. R. Grenadier and N. Wang, Investment under uncertainty and time-inconsistent preferences,, preprint., ().

[9]

P. J. Herings and K. I. M. Rohde, Time-inconsistent preferences in a general equilibriub model,, preprint., ().

[10]

D. Hume, "A Treatise of Human Nature,", First Edition, (1739).

[11]

W. S. Jevons, "Theory of Political Economy,", Mcmillan, (1871).

[12]

P. Krusell and A. A. Smith, Jr., Consumption and saving decisions with quasi-geometric discounting,, Econometrica, 71 (2003), 366. doi: 10.1111/1468-0262.00400.

[13]

D. Laibson, Golden eggs and hyperbolic discounting,, Quarterly J. Econ., 112 (1997), 443. doi: 10.1162/003355397555253.

[14]

A. Malthus, An essay on the principle of population, 1826,, in, 2 (1986).

[15]

J. Marin-Solano and J. Navas, Non-constant discounting in finite horizon: The free terminal time case,, J. Economic Dynamics and Control, 33 (2009), 666. doi: 10.1016/j.jedc.2008.08.008.

[16]

A. Marshall, "Principles of Economics,", 1st ed., (1890).

[17]

M. Miller and M. Salmon, Dynamic games and the time inconsistency of optimal policy in open economics,, The Economic Journal, 95 (1985), 124. doi: 10.2307/2232876.

[18]

I. Palacios-Huerta, Time-inconsistent preferences in Adam Smith and Davis Hume,, History of Political Economy, 35 (2003), 241. doi: 10.1215/00182702-35-2-241.

[19]

V. Pareto, "Manuel d'économie Politique,", Girard and Brieve, (1909).

[20]

B. Peleg and M. E. Yaari, On the existence of a consistent course of action when tastes are changing,, Review of Economic Studies, 40 (1973), 391. doi: 10.2307/2296458.

[21]

R. A. Pollak, Consistent planning,, Review of Economic Studies, 35 (1968), 185. doi: 10.2307/2296548.

[22]

A. Smith, "The Theory of Moral Sentiments,", First Edition, (1759).

[23]

R. H. Strotz, Myopia and inconsistency in dynamic utility maximization,, Review of Econ. Studies, 23 (1955), 165. doi: 10.2307/2295722.

[24]

L. Tesfatsion, Time inconsistency of benevolent government economics,, J. Public Economics, 31 (1986), 25. doi: 10.1016/0047-2727(86)90070-8.

[25]

J. Yong, A deterministic time-inconsistent optimal control problem -- An essentially cooperative approach,, Acta Appl. Math. Sinica, ().

[26]

J. Yong, and X. Y. Zhou, "Stochastic Controls: Hamiltonian Systems and HJB Equations,", Applications of Mathematics (New York), (1999).

[1]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[2]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[3]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[4]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[5]

Libin Mou, Jiongmin Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. Journal of Industrial & Management Optimization, 2006, 2 (1) : 95-117. doi: 10.3934/jimo.2006.2.95

[6]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[7]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[8]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[9]

Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435

[10]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[11]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[12]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[13]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[14]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[15]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[16]

Zhiping Chen, Jia Liu, Gang Li. Time consistent policy of multi-period mean-variance problem in stochastic markets. Journal of Industrial & Management Optimization, 2016, 12 (1) : 229-249. doi: 10.3934/jimo.2016.12.229

[17]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[18]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[19]

Sergiu Aizicovici, Yimin Ding, N. S. Papageorgiou. Time dependent Volterra integral inclusions in Banach spaces. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 53-63. doi: 10.3934/dcds.1996.2.53

[20]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]