\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A deterministic linear quadratic time-inconsistent optimal control problem

Abstract / Introduction Related Papers Cited by
  • A time-inconsistent optimal control problem is formulated and studied for a controlled linear ordinary differential equation with a quadratic cost functional. A notion of time-consistent equilibrium strategy is introduced for the original time-inconsistent problem. Under certain conditions, we construct an equilibrium strategy which can be represented via a Riccati--Volterra integral equation system. Our approach is based on a study of multi-person hierarchical differential games.
    Mathematics Subject Classification: Primary: 49L20, 49N10, 49N70; Secondary: 91A23, 91A65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, Preprint, London Business School, 2008.

    [2]

    L. D. Berkovitz, "Optimal Control Theory," Applied Mathematical Sciences, Vol. 12, Springer-Verlag, New York-Heidelberg, 1974.

    [3]

    T. Björk and A. MurgociA general theory of Markovian time inconsistent stochasitc control problem, working paper.

    [4]

    E. V. Böhm-Bawerk, "The Positive Theory of Capital," Books for Libraries Press, Freeport, New York, 1891.

    [5]

    I. Ekeland and A. Lazrak, Being serious about non-commitment: subgame perfect equilibrium in continuous time, preprint, Univ. British Columbia, 2008.

    [6]

    I. Ekeland and T. Privu, Investment and consumption without commitment, preprint, Univ. British Columbia, 2007.

    [7]

    S. M. Goldman, Consistent plans, Review of Economic Studies, 47 (1980), 533-537.doi: 10.2307/2297304.

    [8]

    S. R. Grenadier and N. WangInvestment under uncertainty and time-inconsistent preferences, preprint.

    [9]

    P. J. Herings and K. I. M. RohdeTime-inconsistent preferences in a general equilibriub model, preprint.

    [10]

    D. Hume, "A Treatise of Human Nature," First Edition, 1739; Reprint, Oxford Univ. Press, New York, 1978.

    [11]

    W. S. Jevons, "Theory of Political Economy," Mcmillan, London, 1871.

    [12]

    P. Krusell and A. A. Smith, Jr., Consumption and saving decisions with quasi-geometric discounting, Econometrica, 71 (2003), 366-375.doi: 10.1111/1468-0262.00400.

    [13]

    D. Laibson, Golden eggs and hyperbolic discounting, Quarterly J. Econ., 112 (1997), 443-477.doi: 10.1162/003355397555253.

    [14]

    A. Malthus, An essay on the principle of population, 1826, "The Works of Thomas Robert Malthus" (Eds. E. A. Wrigley and D. Souden), 2 and 3, W. Pickering, London, 1986.

    [15]

    J. Marin-Solano and J. Navas, Non-constant discounting in finite horizon: The free terminal time case, J. Economic Dynamics and Control, 33 (2009), 666-675.doi: 10.1016/j.jedc.2008.08.008.

    [16]

    A. Marshall, "Principles of Economics," 1st ed., 1890; 8th ed., Macmillan, London, 1920.

    [17]

    M. Miller and M. Salmon, Dynamic games and the time inconsistency of optimal policy in open economics, The Economic Journal, 95 (1985), 124-137.doi: 10.2307/2232876.

    [18]

    I. Palacios-Huerta, Time-inconsistent preferences in Adam Smith and Davis Hume, History of Political Economy, 35 (2003), 241-268.doi: 10.1215/00182702-35-2-241.

    [19]

    V. Pareto, "Manuel d'économie Politique," Girard and Brieve, Paris, 1909.

    [20]

    B. Peleg and M. E. Yaari, On the existence of a consistent course of action when tastes are changing, Review of Economic Studies, 40 (1973), 391-401.doi: 10.2307/2296458.

    [21]

    R. A. Pollak, Consistent planning, Review of Economic Studies, 35 (1968), 185-199.doi: 10.2307/2296548.

    [22]

    A. Smith, "The Theory of Moral Sentiments," First Edition, 1759; Reprint, Oxford Univ. Press, 1976.

    [23]

    R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Review of Econ. Studies, 23 (1955), 165-180.doi: 10.2307/2295722.

    [24]

    L. Tesfatsion, Time inconsistency of benevolent government economics, J. Public Economics, 31 (1986), 25-52.doi: 10.1016/0047-2727(86)90070-8.

    [25]

    J. YongA deterministic time-inconsistent optimal control problem -- An essentially cooperative approach, Acta Appl. Math. Sinica, to appear.

    [26]

    J. Yong, and X. Y. Zhou, "Stochastic Controls: Hamiltonian Systems and HJB Equations," Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(255) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return