• Previous Article
    Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain
  • MCRF Home
  • This Issue
  • Next Article
    Existence of absolute minimizers for noncoercive Hamiltonians and viscosity solutions of the Aronsson equation
December  2012, 2(4): 383-398. doi: 10.3934/mcrf.2012.2.383

Optimal syntheses for state constrained problems with application to optimization of cancer therapies

1. 

Department of Mathematical Sciences, and Center for Computational and Integrative Biology, Rutgers University - Camden, 227 Penn Street, Camden NJ 08102, United States

Received  November 2011 Revised  June 2012 Published  October 2012

The use of combined therapies to treat cancer is common nowadays and some papers already addressed the relative optimization problems. In particular, it is natural to have state constraints, which usually correspond to bounds on feasible amounts of drugs to be used. The application of Pontryagin Maximum Principle is particularly difficult in such case. Therefore, we resort to sufficient conditions for optimality to achieve results more easily applicable to systems biology models. The approach is developed both for candidate value functions and optimal syntheses. Then it is shown at work on some specific problems in combined cancer therapy.
Citation: Benedetto Piccoli. Optimal syntheses for state constrained problems with application to optimization of cancer therapies. Mathematical Control & Related Fields, 2012, 2 (4) : 383-398. doi: 10.3934/mcrf.2012.2.383
References:
[1]

M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", Birkhauser Boston, (1997). Google Scholar

[2]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences (AIMS), (2007). Google Scholar

[3]

T. Burden, J. Ernstberger and K. Renee Fister, Optimal control applied to immunotherapy,, Discrete Continuous Dynam. Systems - B, 4 (2004), 135. Google Scholar

[4]

P. Cannarsa, H. Frankowska and E. Marchini, On Bolza optimal control problems with constraints,, Discrete Continuous Dynam. Systems - B, 11 (2009), 629. doi: 10.3934/dcdsb.2009.11.629. Google Scholar

[5]

A. Cappuccio, F. Castiglione and B. Piccoli, Determination of the optimal therapeutic protocols in cancer immunotherapy,, Math. Biosci., 209 (2007), 1. doi: 10.1016/j.mbs.2007.02.009. Google Scholar

[6]

F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotheraphy,, in, (2004), 585. Google Scholar

[7]

F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy,, Bull. Math. Biol., 68 (2006), 255. doi: 10.1007/s11538-005-9014-3. Google Scholar

[8]

F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control,, J. Theoret. Biol., 247 (2007), 723. doi: 10.1016/j.jtbi.2007.04.003. Google Scholar

[9]

S. Chareyron and M. Alamir, Mixed immunotherapy and chemotherapy of tumors: feedback design and model updating schemes,, J. Theor. Biol., 258 (2009), 444. doi: 10.1016/j.jtbi.2008.07.002. Google Scholar

[10]

L. G. de Pillis, K. Renee Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore and B. Preskill, Seeking bang-bang solutions of mixed immuno-chemotherapy of tumors,, Electron. J. Differential Equations, 171 (2007). Google Scholar

[11]

L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations,, J. Theoret. Biol., 238 (2006), 841. doi: 10.1016/j.jtbi.2005.06.037. Google Scholar

[12]

A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schaettler, On optimal delivery of combination of therapy for tumors,, Math. Biosci., 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004. Google Scholar

[13]

K. Renee Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954. doi: 10.1137/S0036139902413489. Google Scholar

[14]

R. A. Goldsby, T. J. Kindt and B. A. Osborne, "Kuby Immunology,", IV. eds. W. H. Freeman and Company, (2000). Google Scholar

[15]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints,, SIAM Rev., 37 (1995), 181. Google Scholar

[16]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of teh tumor-immune interaction,, J. Math. Biol., 37 (1998), 235. doi: 10.1007/s002850050127. Google Scholar

[17]

U. Ledzewicz, J. Munden and H. Schaettler, Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models,, Discrete Continuous Dynam. Systems - B, 12 (2009), 415. doi: 10.3934/dcdsb.2009.12.415. Google Scholar

[18]

U. Ledzewicz, H. Schaettler and A. D'Onofrio, Optimal control for combination of therapy in cancer,, in, (2008), 1537. Google Scholar

[19]

B. Piccoli, Infinite time regular synthesis,, ESAIM Control Optim. Calc. Var., 3 (1998), 381. Google Scholar

[20]

B. Piccoli and H. J. Sussmann, Regular synthesis and sufficiency conditions for optimality,, SIAM J. Control Optim., 39 (2000), 359. doi: 10.1137/S0363012999322031. Google Scholar

[21]

R. Vinter, "Optimal Control,", Birkhauser Boston, (2000). Google Scholar

show all references

References:
[1]

M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", Birkhauser Boston, (1997). Google Scholar

[2]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences (AIMS), (2007). Google Scholar

[3]

T. Burden, J. Ernstberger and K. Renee Fister, Optimal control applied to immunotherapy,, Discrete Continuous Dynam. Systems - B, 4 (2004), 135. Google Scholar

[4]

P. Cannarsa, H. Frankowska and E. Marchini, On Bolza optimal control problems with constraints,, Discrete Continuous Dynam. Systems - B, 11 (2009), 629. doi: 10.3934/dcdsb.2009.11.629. Google Scholar

[5]

A. Cappuccio, F. Castiglione and B. Piccoli, Determination of the optimal therapeutic protocols in cancer immunotherapy,, Math. Biosci., 209 (2007), 1. doi: 10.1016/j.mbs.2007.02.009. Google Scholar

[6]

F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotheraphy,, in, (2004), 585. Google Scholar

[7]

F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy,, Bull. Math. Biol., 68 (2006), 255. doi: 10.1007/s11538-005-9014-3. Google Scholar

[8]

F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control,, J. Theoret. Biol., 247 (2007), 723. doi: 10.1016/j.jtbi.2007.04.003. Google Scholar

[9]

S. Chareyron and M. Alamir, Mixed immunotherapy and chemotherapy of tumors: feedback design and model updating schemes,, J. Theor. Biol., 258 (2009), 444. doi: 10.1016/j.jtbi.2008.07.002. Google Scholar

[10]

L. G. de Pillis, K. Renee Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore and B. Preskill, Seeking bang-bang solutions of mixed immuno-chemotherapy of tumors,, Electron. J. Differential Equations, 171 (2007). Google Scholar

[11]

L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations,, J. Theoret. Biol., 238 (2006), 841. doi: 10.1016/j.jtbi.2005.06.037. Google Scholar

[12]

A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schaettler, On optimal delivery of combination of therapy for tumors,, Math. Biosci., 222 (2009), 13. doi: 10.1016/j.mbs.2009.08.004. Google Scholar

[13]

K. Renee Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies,, SIAM J. Appl. Math., 63 (2003), 1954. doi: 10.1137/S0036139902413489. Google Scholar

[14]

R. A. Goldsby, T. J. Kindt and B. A. Osborne, "Kuby Immunology,", IV. eds. W. H. Freeman and Company, (2000). Google Scholar

[15]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints,, SIAM Rev., 37 (1995), 181. Google Scholar

[16]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of teh tumor-immune interaction,, J. Math. Biol., 37 (1998), 235. doi: 10.1007/s002850050127. Google Scholar

[17]

U. Ledzewicz, J. Munden and H. Schaettler, Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models,, Discrete Continuous Dynam. Systems - B, 12 (2009), 415. doi: 10.3934/dcdsb.2009.12.415. Google Scholar

[18]

U. Ledzewicz, H. Schaettler and A. D'Onofrio, Optimal control for combination of therapy in cancer,, in, (2008), 1537. Google Scholar

[19]

B. Piccoli, Infinite time regular synthesis,, ESAIM Control Optim. Calc. Var., 3 (1998), 381. Google Scholar

[20]

B. Piccoli and H. J. Sussmann, Regular synthesis and sufficiency conditions for optimality,, SIAM J. Control Optim., 39 (2000), 359. doi: 10.1137/S0363012999322031. Google Scholar

[21]

R. Vinter, "Optimal Control,", Birkhauser Boston, (2000). Google Scholar

[1]

Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096

[2]

Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial & Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329

[3]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[4]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[5]

J.-P. Raymond, F. Tröltzsch. Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 431-450. doi: 10.3934/dcds.2000.6.431

[6]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[7]

A. C. Eberhard, C.E.M. Pearce. A sufficient optimality condition for nonregular problems via a nonlinear Lagrangian. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 301-331. doi: 10.3934/naco.2012.2.301

[8]

B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran. Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences & Engineering, 2004, 1 (2) : 223-241. doi: 10.3934/mbe.2004.1.223

[9]

Miniak-Górecka Alicja, Nowakowski Andrzej. Sufficient optimality conditions for a class of epidemic problems with control on the boundary. Mathematical Biosciences & Engineering, 2017, 14 (1) : 263-275. doi: 10.3934/mbe.2017017

[10]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[11]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[12]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[13]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[14]

Luis A. Fernández, Cecilia Pola. Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1563-1588. doi: 10.3934/dcdsb.2014.19.1563

[15]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[16]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[17]

Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences & Engineering, 2013, 10 (3) : 803-819. doi: 10.3934/mbe.2013.10.803

[18]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

[19]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[20]

Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]