2013, 3(3): 269-286. doi: 10.3934/mcrf.2013.3.269

On the motion planning of the ball with a trailer

1. 

Aix Marseille Université, CNRS, ENSAM, LSIS, UMR 7296, 13397 Marseille, France, France

Received  November 2012 Revised  March 2013 Published  September 2013

This paper is about motion planing for kinematic systems, and more particularly $\epsilon$-approximations of non-admissible trajectories by admissible ones. This is done in a certain optimal sense.
    The resolution of this motion planing problem is showcased through the thorough treatment of the ball with a trailer kinematic system, which is a non-holonomic system with flag of type $(2,3,5,6)$.
Citation: Nicolas Boizot, Jean-Paul Gauthier. On the motion planning of the ball with a trailer. Mathematical Control & Related Fields, 2013, 3 (3) : 269-286. doi: 10.3934/mcrf.2013.3.269
References:
[1]

A. A. Agrachev, H. E. A. Chakir and J. P. Gauthier, Subriemannian metrics on $R^3$,, in Geometric Control and Nonholonomic Mechanics, 25 (1998), 29.

[2]

A. A. Agrachev and J. P. Gauthier, Subriemannian metrics and isoperimetric problems in the contact case,, in honor L. Pontriaguin, 103 (1999), 5.

[3]

A. A. Agrachev and Y. Sachkov, "Control Theory from the Geometric View Point,", Encyclopaedia of Mathematical Sciences, (2004).

[4]

A. M. Bloch, "Nonholonomic Mechanics and Control,", With the collaboration of J. Baillieul, (2003). doi: 10.1007/b97376.

[5]

N. Boizot and J-P. Gauthier, Motion planning for kinematic systems,, IEEE Transactions on Automatic Control, 58 (2013), 1430. doi: 10.1109/TAC.2012.2232376.

[6]

R. W. Brockett and L. Dai, Non-holonomic kinematics and the role of elliptic functions in constructive controllability,, in Z. Li and J. Canny (Eds), 192 (1993), 1. doi: 10.1007/978-1-4615-3176-0_1.

[7]

H. E. A. Chakir, J. P. Gauthier and I. A. K. Kupka, Small subriemannian balls on $R^3$,, Journal of Dynamical and Control Systems, 2 (1996), 359. doi: 10.1007/BF02269424.

[8]

J. Dixmier, Sur les représentations unitaires des groupes de lie nilpotents. II.,, (French) Bull. Soc. Math. France, 85 (1957), 325.

[9]

J. P. Gauthier, F. Monroy-Perez and C. Romero-Melendez, On complexity and motion planning for corank one subriemannian metrics,, ESAIM Control Optim. Calc. Var., 10 (2004), 634. doi: 10.1051/cocv:2004024.

[10]

J. P. Gauthier and V. Zakalyukin, On the codimension one motion planning problem,, J. Dyn. Control Syst., 11 (2005), 73. doi: 10.1007/s10883-005-0002-6.

[11]

J. P. Gauthier and V. Zakalyukin, On the One-Step-Bracket-Generating motion planning problem,, J. Dyn. Control Syst., 11 (2005), 215. doi: 10.1007/s10883-005-4171-0.

[12]

J. P. Gauthier and V. Zakalyukin, Robot motion planning, a wild case,, Proceedings of the Steklov Institute of Mathematics, 250 (2005), 56.

[13]

J. P. Gauthier and V. Zakalyukin, On the motion planning problem, complexity, entropy, and nonholonomic interpolation,, Journal of Dynamical and Control Systems, 12 (2006), 371. doi: 10.1007/s10450-006-0005-y.

[14]

J. P. Gauthier and V. Zakalyukin, Entropy estimations for motion planning problems in robotics,, Volume In honor of Dmitry Victorovich Anosov, 256 (2007), 62. doi: 10.1134/S008154380701004X.

[15]

J. P. Gauthier, B. Jakubczyk and V. Zakalyukin, Motion planning and fastly oscillating controls,, SIAM Journ. on Control and Optim., 48 (2010), 3433. doi: 10.1137/090761884.

[16]

M. Gromov, "Carnot Caratheodory Spaces Seen from Within,", Eds A. Bellaiche, (1996), 79.

[17]

F. Jean, Complexity of nonholonomic motion planning,, International Journal on Control, 74 (2001), 776. doi: 10.1080/00207170010017392.

[18]

F. Jean, Entropy and complexity of a path in subriemannian geometry,, ESAIM Control Optim. Calc. Var., 9 (2003), 485. doi: 10.1051/cocv:2003024.

[19]

F. Jean and E. Falbel, Measures and transverse paths in subriemannian geometry,, Journal d'Analyse Mathématique, 91 (2003), 231. doi: 10.1007/BF02788789.

[20]

V. Jurdjevic, The geometry of the plate-ball problem,, Archive for Rational Mechanics and Analysis, 124 (1993), 305. doi: 10.1007/BF00375605.

[21]

J. P. Laumond, (editor), "Robot Motion Planning and Control,", Lecture notes in Control and Information Sciences 229, (1998). doi: 10.1007/BFb0036069.

[22]

L. Pontryagin, V. Boltyanski, R. Gamkelidze and E. Michenko, "The Mathematical Theory of Optimal Processes,", Wiley, (1962).

[23]

D. A. Singer, Curves whose curvature depend on the distance from the origin,, the American mathematical Monthly, 106 (1999), 835. doi: 10.2307/2589616.

[24]

H. J. Sussmann and G. Lafferriere, Motion planning for controllable systems without drift,, In Proceedings of the IEEE Conference on Robotics and Automation, (1991), 109.

[25]

H. J. Sussmann and W. S. Liu, Lie Bracket extensions and averaging: The single bracket generating case,, in Nonholonomic Motion Planning, (1993), 109.

[26]

, , ().

show all references

References:
[1]

A. A. Agrachev, H. E. A. Chakir and J. P. Gauthier, Subriemannian metrics on $R^3$,, in Geometric Control and Nonholonomic Mechanics, 25 (1998), 29.

[2]

A. A. Agrachev and J. P. Gauthier, Subriemannian metrics and isoperimetric problems in the contact case,, in honor L. Pontriaguin, 103 (1999), 5.

[3]

A. A. Agrachev and Y. Sachkov, "Control Theory from the Geometric View Point,", Encyclopaedia of Mathematical Sciences, (2004).

[4]

A. M. Bloch, "Nonholonomic Mechanics and Control,", With the collaboration of J. Baillieul, (2003). doi: 10.1007/b97376.

[5]

N. Boizot and J-P. Gauthier, Motion planning for kinematic systems,, IEEE Transactions on Automatic Control, 58 (2013), 1430. doi: 10.1109/TAC.2012.2232376.

[6]

R. W. Brockett and L. Dai, Non-holonomic kinematics and the role of elliptic functions in constructive controllability,, in Z. Li and J. Canny (Eds), 192 (1993), 1. doi: 10.1007/978-1-4615-3176-0_1.

[7]

H. E. A. Chakir, J. P. Gauthier and I. A. K. Kupka, Small subriemannian balls on $R^3$,, Journal of Dynamical and Control Systems, 2 (1996), 359. doi: 10.1007/BF02269424.

[8]

J. Dixmier, Sur les représentations unitaires des groupes de lie nilpotents. II.,, (French) Bull. Soc. Math. France, 85 (1957), 325.

[9]

J. P. Gauthier, F. Monroy-Perez and C. Romero-Melendez, On complexity and motion planning for corank one subriemannian metrics,, ESAIM Control Optim. Calc. Var., 10 (2004), 634. doi: 10.1051/cocv:2004024.

[10]

J. P. Gauthier and V. Zakalyukin, On the codimension one motion planning problem,, J. Dyn. Control Syst., 11 (2005), 73. doi: 10.1007/s10883-005-0002-6.

[11]

J. P. Gauthier and V. Zakalyukin, On the One-Step-Bracket-Generating motion planning problem,, J. Dyn. Control Syst., 11 (2005), 215. doi: 10.1007/s10883-005-4171-0.

[12]

J. P. Gauthier and V. Zakalyukin, Robot motion planning, a wild case,, Proceedings of the Steklov Institute of Mathematics, 250 (2005), 56.

[13]

J. P. Gauthier and V. Zakalyukin, On the motion planning problem, complexity, entropy, and nonholonomic interpolation,, Journal of Dynamical and Control Systems, 12 (2006), 371. doi: 10.1007/s10450-006-0005-y.

[14]

J. P. Gauthier and V. Zakalyukin, Entropy estimations for motion planning problems in robotics,, Volume In honor of Dmitry Victorovich Anosov, 256 (2007), 62. doi: 10.1134/S008154380701004X.

[15]

J. P. Gauthier, B. Jakubczyk and V. Zakalyukin, Motion planning and fastly oscillating controls,, SIAM Journ. on Control and Optim., 48 (2010), 3433. doi: 10.1137/090761884.

[16]

M. Gromov, "Carnot Caratheodory Spaces Seen from Within,", Eds A. Bellaiche, (1996), 79.

[17]

F. Jean, Complexity of nonholonomic motion planning,, International Journal on Control, 74 (2001), 776. doi: 10.1080/00207170010017392.

[18]

F. Jean, Entropy and complexity of a path in subriemannian geometry,, ESAIM Control Optim. Calc. Var., 9 (2003), 485. doi: 10.1051/cocv:2003024.

[19]

F. Jean and E. Falbel, Measures and transverse paths in subriemannian geometry,, Journal d'Analyse Mathématique, 91 (2003), 231. doi: 10.1007/BF02788789.

[20]

V. Jurdjevic, The geometry of the plate-ball problem,, Archive for Rational Mechanics and Analysis, 124 (1993), 305. doi: 10.1007/BF00375605.

[21]

J. P. Laumond, (editor), "Robot Motion Planning and Control,", Lecture notes in Control and Information Sciences 229, (1998). doi: 10.1007/BFb0036069.

[22]

L. Pontryagin, V. Boltyanski, R. Gamkelidze and E. Michenko, "The Mathematical Theory of Optimal Processes,", Wiley, (1962).

[23]

D. A. Singer, Curves whose curvature depend on the distance from the origin,, the American mathematical Monthly, 106 (1999), 835. doi: 10.2307/2589616.

[24]

H. J. Sussmann and G. Lafferriere, Motion planning for controllable systems without drift,, In Proceedings of the IEEE Conference on Robotics and Automation, (1991), 109.

[25]

H. J. Sussmann and W. S. Liu, Lie Bracket extensions and averaging: The single bracket generating case,, in Nonholonomic Motion Planning, (1993), 109.

[26]

, , ().

[1]

Alex L Castro, Wyatt Howard, Corey Shanbrom. Bridges between subriemannian geometry and algebraic geometry: Now and then. Conference Publications, 2015, 2015 (special) : 239-247. doi: 10.3934/proc.2015.0239

[2]

M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223

[3]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial & Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461

[4]

Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-26. doi: 10.3934/dcdsb.2019078

[5]

Klas Modin. Geometry of matrix decompositions seen through optimal transport and information geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 335-390. doi: 10.3934/jgm.2017014

[6]

Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. Impulsive control of a symmetric ball rolling without sliding or spinning. Journal of Geometric Mechanics, 2010, 2 (4) : 321-342. doi: 10.3934/jgm.2010.2.321

[7]

Ching-Lung Lin, Gunther Uhlmann, Jenn-Nan Wang. Optimal three-ball inequalities and quantitative uniqueness for the Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1273-1290. doi: 10.3934/dcds.2010.28.1273

[8]

Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

[9]

Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135

[10]

Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578

[11]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[12]

Shu Zhang, Yuan Yuan. The Filippov equilibrium and sliding motion in an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1189-1206. doi: 10.3934/dcdsb.2017058

[13]

Alexander Shmyrov, Vasily Shmyrov. The optimal stabilization of orbital motion in a neighborhood of collinear libration point. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 185-189. doi: 10.3934/naco.2017012

[14]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[15]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[16]

Jorge San Martín, Takéo Takahashi, Marius Tucsnak. An optimal control approach to ciliary locomotion. Mathematical Control & Related Fields, 2016, 6 (2) : 293-334. doi: 10.3934/mcrf.2016005

[17]

C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial & Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435

[18]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[19]

Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030

[20]

Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415-432. doi: 10.3934/jgm.2013.5.415

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]