March  2015, 5(1): 1-30. doi: 10.3934/mcrf.2015.5.1

On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's

1. 

Institut Elie Cartan de Lorraine, UMR-CNRS 7502, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex 1, France

Received  December 2013 Revised  June 2014 Published  January 2015

We consider single-observed cascade systems of hyperbolic equations. We first consider the class of bounded operators that satisfy a non negativity property $(NNP)$. Within this class, we give a necessary and sufficient condition for observability of the cascade system by a single observation. We further show that if the coupling operator does not satisfy $(NNP)$ (contrarily to [5], or also e.g.[3,4] for symmetrically coupled systems), the usual observability inequality through a single component may still occur in a general framework, under some smallness conditions, but it may also be violated. When the coupling operator is a multiplication operator, $(NNP)$ is violated whenever the coupling coefficient changes sign in the spatial domain. We give explicit constructive examples of such coupling operators for which unique continuation may fail for an infinite dimensional set of initial data, that we characterize explicitly. We also exhibit examples of couplings and initial data for which the observability inequality holds but in weaker norms. These examples extend to parabolic systems. Finally, we show that the two-level energy method [1,2] which involves different levels of energies for the observed and unobserved component, may involve the same levels of energies of these respective components, if the differential order of the coupling is higher (operating here through velocities instead of displacements). We further give an application to controlled systems coupled in velocities. This shows that the answer to observability and unique continuation questions for single-observed cascade systems is much more involved in the case of coupling operators that violate $(NNP)$ or of higher order coupling operators, and that the mathematical properties of the coupling operator greatly influence the dynamics of the observed system even though it operates through lower order differential terms. We indicate several extensions and future directions of research.
Citation: Fatiha Alabau-Boussouira. On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's. Mathematical Control & Related Fields, 2015, 5 (1) : 1-30. doi: 10.3934/mcrf.2015.5.1
References:
[1]

C. R. Acad. Sci. Paris, Série I, 333 (2001), 645-650. doi: 10.1016/S0764-4442(01)02076-6.  Google Scholar

[2]

SIAM J. Control Opt., 42 (2003), 871-906. doi: 10.1137/S0363012902402608.  Google Scholar

[3]

C. R. Acad. Sci. Paris, Série I, 349 (2011), 395-400. doi: 10.1016/j.crma.2011.02.004.  Google Scholar

[4]

Journal de Mathématiques Pures et Appliquées, 99 (2013), 544-576. doi: 10.1016/j.matpur.2012.09.012.  Google Scholar

[5]

Mathematics of Control, Signals, and Systems, 26 (2014), 1-46. doi: 10.1007/s00498-013-0112-8.  Google Scholar

[6]

C. R. Acad. Sci. Paris, Série I, 350 (2012), 577-582. doi: 10.1016/j.crma.2012.05.009.  Google Scholar

[7]

Adv. in Differential Equations, 18 (2013), 1005-1072.  Google Scholar

[8]

Mathematical Control and Related Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[9]

C. R. Acad. Sci. Paris, Série I, 352 (2014), 391-396. doi: 10.1016/j.crma.2014.03.004.  Google Scholar

[10]

SIAM J. Control Opt., 30 (1992), 1024-1065. doi: 10.1137/0330055.  Google Scholar

[11]

Math. Control Relat. Fields, 4 (2014), 263-287. doi: 10.3934/mcrf.2014.4.263.  Google Scholar

[12]

Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.  Google Scholar

[13]

SIAM J. Control Optim., 48 (2010), 5629-5653. doi: 10.1137/100784539.  Google Scholar

[14]

SIAM J. Control Opt., 45 (2006), 1758-1768. doi: 10.1137/060654372.  Google Scholar

[15]

ARMA, 211 (2014), 113-187. doi: 10.1007/s00205-013-0670-4.  Google Scholar

[16]

Progress of Theoretical Physics, 69 (1983), 32-47. doi: 10.1143/PTP.69.32.  Google Scholar

[17]

ESAIM COCV, 16 (2010), 247-274. doi: 10.1051/cocv/2008077.  Google Scholar

[18]

Chaos, 7 (1997), 635-643. doi: 10.1063/1.166263.  Google Scholar

[19]

Collection RMA, 36, Masson-John Wiley, Paris-Chicester, 1994.  Google Scholar

[20]

C. R. Acad. Sci. Paris, 351 (2013), 687-693. doi: 10.1016/j.crma.2013.09.013.  Google Scholar

[21]

Chin. Ann. Math. Ser. B, 34 (2013), 139-160. doi: 10.1007/s11401-012-0754-8.  Google Scholar

[22]

Vol. 1-2, Masson, Paris, 1988. Google Scholar

[23]

in Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), Universidad de Málaga, 1989, 43-54. Google Scholar

[24]

Thèse de doctorat de l'université d'Aix-Marseille, 2013. Google Scholar

[25]

C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 291-296. doi: 10.1016/j.crma.2011.01.014.  Google Scholar

[26]

C. R. Acad. Sci. Paris, Série I, 346 (2008), 407-412. doi: 10.1016/j.crma.2008.02.019.  Google Scholar

[27]

SIAM J. Control Opt., 49 (2011), 1221-1238. doi: 10.1137/100803080.  Google Scholar

[28]

CPDE, 25 (2000), 39-72. doi: 10.1080/03605300008821507.  Google Scholar

[29]

CPAA, 8 (2009), 457-471. doi: 10.3934/cpaa.2009.8.457.  Google Scholar

[30]

Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[31]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 979-998. doi: 10.1142/S0218127494000691.  Google Scholar

show all references

References:
[1]

C. R. Acad. Sci. Paris, Série I, 333 (2001), 645-650. doi: 10.1016/S0764-4442(01)02076-6.  Google Scholar

[2]

SIAM J. Control Opt., 42 (2003), 871-906. doi: 10.1137/S0363012902402608.  Google Scholar

[3]

C. R. Acad. Sci. Paris, Série I, 349 (2011), 395-400. doi: 10.1016/j.crma.2011.02.004.  Google Scholar

[4]

Journal de Mathématiques Pures et Appliquées, 99 (2013), 544-576. doi: 10.1016/j.matpur.2012.09.012.  Google Scholar

[5]

Mathematics of Control, Signals, and Systems, 26 (2014), 1-46. doi: 10.1007/s00498-013-0112-8.  Google Scholar

[6]

C. R. Acad. Sci. Paris, Série I, 350 (2012), 577-582. doi: 10.1016/j.crma.2012.05.009.  Google Scholar

[7]

Adv. in Differential Equations, 18 (2013), 1005-1072.  Google Scholar

[8]

Mathematical Control and Related Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267.  Google Scholar

[9]

C. R. Acad. Sci. Paris, Série I, 352 (2014), 391-396. doi: 10.1016/j.crma.2014.03.004.  Google Scholar

[10]

SIAM J. Control Opt., 30 (1992), 1024-1065. doi: 10.1137/0330055.  Google Scholar

[11]

Math. Control Relat. Fields, 4 (2014), 263-287. doi: 10.3934/mcrf.2014.4.263.  Google Scholar

[12]

Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007.  Google Scholar

[13]

SIAM J. Control Optim., 48 (2010), 5629-5653. doi: 10.1137/100784539.  Google Scholar

[14]

SIAM J. Control Opt., 45 (2006), 1758-1768. doi: 10.1137/060654372.  Google Scholar

[15]

ARMA, 211 (2014), 113-187. doi: 10.1007/s00205-013-0670-4.  Google Scholar

[16]

Progress of Theoretical Physics, 69 (1983), 32-47. doi: 10.1143/PTP.69.32.  Google Scholar

[17]

ESAIM COCV, 16 (2010), 247-274. doi: 10.1051/cocv/2008077.  Google Scholar

[18]

Chaos, 7 (1997), 635-643. doi: 10.1063/1.166263.  Google Scholar

[19]

Collection RMA, 36, Masson-John Wiley, Paris-Chicester, 1994.  Google Scholar

[20]

C. R. Acad. Sci. Paris, 351 (2013), 687-693. doi: 10.1016/j.crma.2013.09.013.  Google Scholar

[21]

Chin. Ann. Math. Ser. B, 34 (2013), 139-160. doi: 10.1007/s11401-012-0754-8.  Google Scholar

[22]

Vol. 1-2, Masson, Paris, 1988. Google Scholar

[23]

in Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), Universidad de Málaga, 1989, 43-54. Google Scholar

[24]

Thèse de doctorat de l'université d'Aix-Marseille, 2013. Google Scholar

[25]

C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 291-296. doi: 10.1016/j.crma.2011.01.014.  Google Scholar

[26]

C. R. Acad. Sci. Paris, Série I, 346 (2008), 407-412. doi: 10.1016/j.crma.2008.02.019.  Google Scholar

[27]

SIAM J. Control Opt., 49 (2011), 1221-1238. doi: 10.1137/100803080.  Google Scholar

[28]

CPDE, 25 (2000), 39-72. doi: 10.1080/03605300008821507.  Google Scholar

[29]

CPAA, 8 (2009), 457-471. doi: 10.3934/cpaa.2009.8.457.  Google Scholar

[30]

Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[31]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 979-998. doi: 10.1142/S0218127494000691.  Google Scholar

[1]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[2]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[3]

Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[5]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[6]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008

[7]

Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021045

[8]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[9]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[10]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[11]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[12]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[13]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[14]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[15]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[16]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[17]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[18]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[19]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[20]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]