-
Previous Article
Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition
- MCRF Home
- This Issue
- Next Article
On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's
1. | Institut Elie Cartan de Lorraine, UMR-CNRS 7502, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex 1, France |
References:
[1] |
C. R. Acad. Sci. Paris, Série I, 333 (2001), 645-650.
doi: 10.1016/S0764-4442(01)02076-6. |
[2] |
SIAM J. Control Opt., 42 (2003), 871-906.
doi: 10.1137/S0363012902402608. |
[3] |
C. R. Acad. Sci. Paris, Série I, 349 (2011), 395-400.
doi: 10.1016/j.crma.2011.02.004. |
[4] |
Journal de Mathématiques Pures et Appliquées, 99 (2013), 544-576.
doi: 10.1016/j.matpur.2012.09.012. |
[5] |
Mathematics of Control, Signals, and Systems, 26 (2014), 1-46.
doi: 10.1007/s00498-013-0112-8. |
[6] |
C. R. Acad. Sci. Paris, Série I, 350 (2012), 577-582.
doi: 10.1016/j.crma.2012.05.009. |
[7] |
Adv. in Differential Equations, 18 (2013), 1005-1072. |
[8] |
Mathematical Control and Related Fields, 1 (2011), 267-306.
doi: 10.3934/mcrf.2011.1.267. |
[9] |
C. R. Acad. Sci. Paris, Série I, 352 (2014), 391-396.
doi: 10.1016/j.crma.2014.03.004. |
[10] |
SIAM J. Control Opt., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[11] |
Math. Control Relat. Fields, 4 (2014), 263-287.
doi: 10.3934/mcrf.2014.4.263. |
[12] |
Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007. |
[13] |
SIAM J. Control Optim., 48 (2010), 5629-5653.
doi: 10.1137/100784539. |
[14] |
SIAM J. Control Opt., 45 (2006), 1758-1768.
doi: 10.1137/060654372. |
[15] |
ARMA, 211 (2014), 113-187.
doi: 10.1007/s00205-013-0670-4. |
[16] |
Progress of Theoretical Physics, 69 (1983), 32-47.
doi: 10.1143/PTP.69.32. |
[17] |
ESAIM COCV, 16 (2010), 247-274.
doi: 10.1051/cocv/2008077. |
[18] |
Chaos, 7 (1997), 635-643.
doi: 10.1063/1.166263. |
[19] |
Collection RMA, 36, Masson-John Wiley, Paris-Chicester, 1994. |
[20] |
C. R. Acad. Sci. Paris, 351 (2013), 687-693.
doi: 10.1016/j.crma.2013.09.013. |
[21] |
Chin. Ann. Math. Ser. B, 34 (2013), 139-160.
doi: 10.1007/s11401-012-0754-8. |
[22] |
Vol. 1-2, Masson, Paris, 1988. Google Scholar |
[23] |
in Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), Universidad de Málaga, 1989, 43-54. Google Scholar |
[24] |
Thèse de doctorat de l'université d'Aix-Marseille, 2013. Google Scholar |
[25] |
C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 291-296.
doi: 10.1016/j.crma.2011.01.014. |
[26] |
C. R. Acad. Sci. Paris, Série I, 346 (2008), 407-412.
doi: 10.1016/j.crma.2008.02.019. |
[27] |
SIAM J. Control Opt., 49 (2011), 1221-1238.
doi: 10.1137/100803080. |
[28] |
CPDE, 25 (2000), 39-72.
doi: 10.1080/03605300008821507. |
[29] |
CPAA, 8 (2009), 457-471.
doi: 10.3934/cpaa.2009.8.457. |
[30] |
Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[31] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 979-998.
doi: 10.1142/S0218127494000691. |
show all references
References:
[1] |
C. R. Acad. Sci. Paris, Série I, 333 (2001), 645-650.
doi: 10.1016/S0764-4442(01)02076-6. |
[2] |
SIAM J. Control Opt., 42 (2003), 871-906.
doi: 10.1137/S0363012902402608. |
[3] |
C. R. Acad. Sci. Paris, Série I, 349 (2011), 395-400.
doi: 10.1016/j.crma.2011.02.004. |
[4] |
Journal de Mathématiques Pures et Appliquées, 99 (2013), 544-576.
doi: 10.1016/j.matpur.2012.09.012. |
[5] |
Mathematics of Control, Signals, and Systems, 26 (2014), 1-46.
doi: 10.1007/s00498-013-0112-8. |
[6] |
C. R. Acad. Sci. Paris, Série I, 350 (2012), 577-582.
doi: 10.1016/j.crma.2012.05.009. |
[7] |
Adv. in Differential Equations, 18 (2013), 1005-1072. |
[8] |
Mathematical Control and Related Fields, 1 (2011), 267-306.
doi: 10.3934/mcrf.2011.1.267. |
[9] |
C. R. Acad. Sci. Paris, Série I, 352 (2014), 391-396.
doi: 10.1016/j.crma.2014.03.004. |
[10] |
SIAM J. Control Opt., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[11] |
Math. Control Relat. Fields, 4 (2014), 263-287.
doi: 10.3934/mcrf.2014.4.263. |
[12] |
Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007. |
[13] |
SIAM J. Control Optim., 48 (2010), 5629-5653.
doi: 10.1137/100784539. |
[14] |
SIAM J. Control Opt., 45 (2006), 1758-1768.
doi: 10.1137/060654372. |
[15] |
ARMA, 211 (2014), 113-187.
doi: 10.1007/s00205-013-0670-4. |
[16] |
Progress of Theoretical Physics, 69 (1983), 32-47.
doi: 10.1143/PTP.69.32. |
[17] |
ESAIM COCV, 16 (2010), 247-274.
doi: 10.1051/cocv/2008077. |
[18] |
Chaos, 7 (1997), 635-643.
doi: 10.1063/1.166263. |
[19] |
Collection RMA, 36, Masson-John Wiley, Paris-Chicester, 1994. |
[20] |
C. R. Acad. Sci. Paris, 351 (2013), 687-693.
doi: 10.1016/j.crma.2013.09.013. |
[21] |
Chin. Ann. Math. Ser. B, 34 (2013), 139-160.
doi: 10.1007/s11401-012-0754-8. |
[22] |
Vol. 1-2, Masson, Paris, 1988. Google Scholar |
[23] |
in Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), Universidad de Málaga, 1989, 43-54. Google Scholar |
[24] |
Thèse de doctorat de l'université d'Aix-Marseille, 2013. Google Scholar |
[25] |
C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 291-296.
doi: 10.1016/j.crma.2011.01.014. |
[26] |
C. R. Acad. Sci. Paris, Série I, 346 (2008), 407-412.
doi: 10.1016/j.crma.2008.02.019. |
[27] |
SIAM J. Control Opt., 49 (2011), 1221-1238.
doi: 10.1137/100803080. |
[28] |
CPDE, 25 (2000), 39-72.
doi: 10.1080/03605300008821507. |
[29] |
CPAA, 8 (2009), 457-471.
doi: 10.3934/cpaa.2009.8.457. |
[30] |
Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[31] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 979-998.
doi: 10.1142/S0218127494000691. |
[1] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[2] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[3] |
Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021009 |
[4] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[5] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[6] |
Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008 |
[7] |
Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021045 |
[8] |
Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012 |
[9] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[10] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[11] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[12] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[13] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[14] |
Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021048 |
[15] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[16] |
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021019 |
[17] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[18] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[19] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[20] |
Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021036 |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]