2015, 5(3): 501-516. doi: 10.3934/mcrf.2015.5.501

Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs

1. 

School of Mathematics and Statistics, Shandong University, Weihai, Weihai, 264209, China, China

Received  February 2014 Revised  February 2015 Published  July 2015

In this paper, we consider a new type of reflected mean-field backward stochastic differential equations (reflected MFBSDEs, for short), namely, controlled reflected MFBSDEs involving their value function. The existence and the uniqueness of the solution of such equation are proved by using an approximation method. We also adapt this method to give a comparison theorem for our reflected MFBSDEs. The related dynamic programming principle is obtained by extending the approach of stochastic backward semigroups introduced by Peng [11] in 1997. Finally, we show that the value function which our reflected MFBSDE is coupled with is the unique viscosity solution of the related nonlocal parabolic partial differential equation with obstacle.
Citation: Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control & Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501
References:
[1]

G. Barles, R. Buckdahn and E. Pardoux, Backward stochastic differential equations and integral-partial differential equations,, Stoch. Stoch. Rep., 60 (1997), 57. doi: 10.1080/17442509708834099.

[2]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton- Jacobi-Bellman-Isaacs equations,, SIAM. J. Control. Optim., 47 (2008), 444. doi: 10.1137/060671954.

[3]

R. Buckdahn and J. Li, Stochastic differential games with reflection and related obstacle problems for Isaacs equations,, Acta Math. Appl. Sin.-Enql. Ser., 27 (2011), 647. doi: 10.1007/s10255-011-0068-8.

[4]

R. Buckdahn, B. Djehiche, J. Li and S. Peng, Mean-field backward stochastic differential equations. A limit approach,, Ann. Probab., 37 (2009), 1524. doi: 10.1214/08-AOP442.

[5]

R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations,, Stoch. Proc. App., 119 (2009), 3133. doi: 10.1016/j.spa.2009.05.002.

[6]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

T. Hao and J. Li, Backward stochastic differential equations coupled with value function and related optimal control problems,, Abstract Appl. Anal., 2014 (2014). doi: 10.1155/2014/262713.

[8]

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDE's,, Ann. Probab., 25 (1997), 702. doi: 10.1214/aop/1024404416.

[9]

J. Li, Reflected mean-field backward stochastic differential equations. Approximation and associated nonlinear PDEs,, J. Math. Anal. Appl., 413 (2014), 47. doi: 10.1016/j.jmaa.2013.11.028.

[10]

Z. Li and J. Luo, Mean-field reflected backward stochastic differential equations,, Stat. Probab. Lett., 82 (2012), 1961. doi: 10.1016/j.spl.2012.06.018.

[11]

J. Yan, S. Peng and S. Fang, BSDE and stochastic optimizations,, in Topics in Stochastic Analysis (eds. L. Wu), (1997).

show all references

References:
[1]

G. Barles, R. Buckdahn and E. Pardoux, Backward stochastic differential equations and integral-partial differential equations,, Stoch. Stoch. Rep., 60 (1997), 57. doi: 10.1080/17442509708834099.

[2]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton- Jacobi-Bellman-Isaacs equations,, SIAM. J. Control. Optim., 47 (2008), 444. doi: 10.1137/060671954.

[3]

R. Buckdahn and J. Li, Stochastic differential games with reflection and related obstacle problems for Isaacs equations,, Acta Math. Appl. Sin.-Enql. Ser., 27 (2011), 647. doi: 10.1007/s10255-011-0068-8.

[4]

R. Buckdahn, B. Djehiche, J. Li and S. Peng, Mean-field backward stochastic differential equations. A limit approach,, Ann. Probab., 37 (2009), 1524. doi: 10.1214/08-AOP442.

[5]

R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations,, Stoch. Proc. App., 119 (2009), 3133. doi: 10.1016/j.spa.2009.05.002.

[6]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5.

[7]

T. Hao and J. Li, Backward stochastic differential equations coupled with value function and related optimal control problems,, Abstract Appl. Anal., 2014 (2014). doi: 10.1155/2014/262713.

[8]

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDE's,, Ann. Probab., 25 (1997), 702. doi: 10.1214/aop/1024404416.

[9]

J. Li, Reflected mean-field backward stochastic differential equations. Approximation and associated nonlinear PDEs,, J. Math. Anal. Appl., 413 (2014), 47. doi: 10.1016/j.jmaa.2013.11.028.

[10]

Z. Li and J. Luo, Mean-field reflected backward stochastic differential equations,, Stat. Probab. Lett., 82 (2012), 1961. doi: 10.1016/j.spl.2012.06.018.

[11]

J. Yan, S. Peng and S. Fang, BSDE and stochastic optimizations,, in Topics in Stochastic Analysis (eds. L. Wu), (1997).

[1]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[2]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[3]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[4]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[5]

Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287

[6]

Amarjit Budhiraja, John Fricks. Molecular motors, Brownian ratchets, and reflected diffusions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 711-734. doi: 10.3934/dcdsb.2006.6.711

[7]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[8]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

[9]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[10]

Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565

[11]

Imen Hassairi. Existence and uniqueness for $\mathbb{D}$-solutions of reflected BSDEs with two barriers without Mokobodzki's condition. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1139-1156. doi: 10.3934/cpaa.2016.15.1139

[12]

Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051

[13]

Vyacheslav A. Trofimov, Evgeny M. Trykin. A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Conference Publications, 2015, 2015 (special) : 1070-1078. doi: 10.3934/proc.2015.1070

[14]

Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049

[15]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic & Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[16]

Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803

[17]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems & Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[18]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[19]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[20]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]