-
Previous Article
Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result
- MCRF Home
- This Issue
-
Next Article
Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition
Zubov's equation for state-constrained perturbed nonlinear systems
1. | Mathematisches Institute, Universität Bayreuth, 95440 Bayreuth |
2. | Mathematics Department - UMA, ENSTA ParisTech, 91762 Palaiseau, France |
References:
[1] |
M. Abu Hassan and C. Storey, Numerical determination of domains of attraction for electrical power systems using the method of Zubov,, Int. J. Control, 34 (1981), 371. Google Scholar |
[2] |
A. Altarovici, O. Bokanowski and H. Zidani, A general Hamilton-Jacobi framework for nonlinear state-constrained control problems,, ESAIM: Control, 19 (2013), 337.
doi: 10.1051/cocv/2012011. |
[3] |
B. Aulbach, Asymptotic stability regions via extensions of Zubov's method. I and II,, Nonlinear Anal., 7 (1983), 1431.
doi: 10.1016/0362-546X(83)90010-X. |
[4] |
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Systems and Control: Foundations and Applications, (1997).
doi: 10.1007/978-0-8176-4755-1. |
[5] |
O. Bokanowski, N. Forcadel and H. Zidani, Reachability and minimal times for state constrained nonlinear problems without any controllability assumption,, SIAM J. Control Optim., 48 (2010), 4292.
doi: 10.1137/090762075. |
[6] |
R. W. Brockett, Asymptotic stability and feedback stabilization,, in Differential Geometric Control Theory (eds. R. W. Brockett, (1983), 181.
|
[7] |
F. Camilli, A. Cesaroni, L. Grüne and F. Wirth, Stabilization of controlled diffusions and Zubov's method,, Stoch. Dyn., 6 (2006), 373.
doi: 10.1142/S0219493706001803. |
[8] |
F. Camilli and L. Grüne, Characterizing attraction probabilities via the stochastic Zubov equation,, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 457.
doi: 10.3934/dcdsb.2003.3.457. |
[9] |
F. Camilli, L. Grüne and F. Wirth, A regularization of Zubov's equation for robust domains of attraction,, in Nonlinear Control in the Year 2000, (2000), 277.
doi: 10.1007/BFb0110220. |
[10] |
F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed systems,, SIAM J. Control Optim., 40 (2001), 496.
doi: 10.1137/S036301299936316X. |
[11] |
F. Camilli, L. Grüne and F. Wirth, Control Lyapunov functions and Zubov's method,, SIAM J. Control Optim., 47 (2008), 301.
doi: 10.1137/06065129X. |
[12] |
F. Camilli and P. Loreti, A Zubov method for stochastic differential equations,, NoDEA, 13 (2006), 205.
doi: 10.1007/s00030-005-0036-1. |
[13] |
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory,, Springer, (1998).
|
[14] |
N. Forcadel, Z. Rao and H. Zidani, State-constrained optimal control problems of impulsive differential equations,, Applied Mathematics & Optimization, 68 (2013), 1.
doi: 10.1007/s00245-013-9193-5. |
[15] |
R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals,, IEEE Trans. Autom. Control, 30 (1985), 747.
doi: 10.1109/TAC.1985.1104057. |
[16] |
L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,, Numer. Math., 75 (1997), 319.
doi: 10.1007/s002110050241. |
[17] |
L. Grüne, Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization,, Lecture Notes in Mathematics, (1783).
doi: 10.1007/b83677. |
[18] |
L. Grüne and O. S. Serea, Differential games and Zubov's method,, SIAM J. Control Optim., 49 (2011), 2349.
doi: 10.1137/100787829. |
[19] |
N. E. Kirin, R. A. Nelepin and V. N. Bajdaev, Construction of the attraction region by Zubov's method,, Differ. Equations, 17 (1981), 1347.
|
[20] |
H. M. Soner, Optimal control problems with state-space constraint I,, SIAM J. Cont. Optim., 24 (1986), 552.
doi: 10.1137/0324032. |
[21] |
P. Soravia, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. I. Equations of unbounded and degenerate control problems without uniqueness,, Adv. Differential Equations, 4 (1999), 275.
|
[22] |
P. Soravia, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints,, Differential Integral Equations, 12 (1999), 275.
|
[23] |
V. I. Zubov, Methods of A.M. Lyapunov and Their Application,, P. Noordhoff, (1964).
|
show all references
References:
[1] |
M. Abu Hassan and C. Storey, Numerical determination of domains of attraction for electrical power systems using the method of Zubov,, Int. J. Control, 34 (1981), 371. Google Scholar |
[2] |
A. Altarovici, O. Bokanowski and H. Zidani, A general Hamilton-Jacobi framework for nonlinear state-constrained control problems,, ESAIM: Control, 19 (2013), 337.
doi: 10.1051/cocv/2012011. |
[3] |
B. Aulbach, Asymptotic stability regions via extensions of Zubov's method. I and II,, Nonlinear Anal., 7 (1983), 1431.
doi: 10.1016/0362-546X(83)90010-X. |
[4] |
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,, Systems and Control: Foundations and Applications, (1997).
doi: 10.1007/978-0-8176-4755-1. |
[5] |
O. Bokanowski, N. Forcadel and H. Zidani, Reachability and minimal times for state constrained nonlinear problems without any controllability assumption,, SIAM J. Control Optim., 48 (2010), 4292.
doi: 10.1137/090762075. |
[6] |
R. W. Brockett, Asymptotic stability and feedback stabilization,, in Differential Geometric Control Theory (eds. R. W. Brockett, (1983), 181.
|
[7] |
F. Camilli, A. Cesaroni, L. Grüne and F. Wirth, Stabilization of controlled diffusions and Zubov's method,, Stoch. Dyn., 6 (2006), 373.
doi: 10.1142/S0219493706001803. |
[8] |
F. Camilli and L. Grüne, Characterizing attraction probabilities via the stochastic Zubov equation,, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 457.
doi: 10.3934/dcdsb.2003.3.457. |
[9] |
F. Camilli, L. Grüne and F. Wirth, A regularization of Zubov's equation for robust domains of attraction,, in Nonlinear Control in the Year 2000, (2000), 277.
doi: 10.1007/BFb0110220. |
[10] |
F. Camilli, L. Grüne and F. Wirth, A generalization of Zubov's method to perturbed systems,, SIAM J. Control Optim., 40 (2001), 496.
doi: 10.1137/S036301299936316X. |
[11] |
F. Camilli, L. Grüne and F. Wirth, Control Lyapunov functions and Zubov's method,, SIAM J. Control Optim., 47 (2008), 301.
doi: 10.1137/06065129X. |
[12] |
F. Camilli and P. Loreti, A Zubov method for stochastic differential equations,, NoDEA, 13 (2006), 205.
doi: 10.1007/s00030-005-0036-1. |
[13] |
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory,, Springer, (1998).
|
[14] |
N. Forcadel, Z. Rao and H. Zidani, State-constrained optimal control problems of impulsive differential equations,, Applied Mathematics & Optimization, 68 (2013), 1.
doi: 10.1007/s00245-013-9193-5. |
[15] |
R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals,, IEEE Trans. Autom. Control, 30 (1985), 747.
doi: 10.1109/TAC.1985.1104057. |
[16] |
L. Grüne, An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation,, Numer. Math., 75 (1997), 319.
doi: 10.1007/s002110050241. |
[17] |
L. Grüne, Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization,, Lecture Notes in Mathematics, (1783).
doi: 10.1007/b83677. |
[18] |
L. Grüne and O. S. Serea, Differential games and Zubov's method,, SIAM J. Control Optim., 49 (2011), 2349.
doi: 10.1137/100787829. |
[19] |
N. E. Kirin, R. A. Nelepin and V. N. Bajdaev, Construction of the attraction region by Zubov's method,, Differ. Equations, 17 (1981), 1347.
|
[20] |
H. M. Soner, Optimal control problems with state-space constraint I,, SIAM J. Cont. Optim., 24 (1986), 552.
doi: 10.1137/0324032. |
[21] |
P. Soravia, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. I. Equations of unbounded and degenerate control problems without uniqueness,, Adv. Differential Equations, 4 (1999), 275.
|
[22] |
P. Soravia, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints,, Differential Integral Equations, 12 (1999), 275.
|
[23] |
V. I. Zubov, Methods of A.M. Lyapunov and Their Application,, P. Noordhoff, (1964).
|
[1] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[2] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[3] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[4] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[5] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[6] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[7] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[8] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[9] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[10] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[11] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[12] |
Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021 doi: 10.3934/fods.2021005 |
[13] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[14] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[15] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[16] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[17] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[18] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[19] |
Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193 |
[20] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
2019 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]