2015, 5(3): 651-678. doi: 10.3934/mcrf.2015.5.651

Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation

1. 

School of Mathematics, Shandong University, Jinan 250100, China

Received  February 2014 Revised  July 2014 Published  July 2015

In this paper, we study a class of time-inconsistent optimal control problems with random coefficients. By the method of multi-person differential games, a family of parameterized backward stochastic partial differential equations, called the stochastic equilibrium Hamilton-Jacobi-Bellman equation, is derived for the equilibrium value function of this problem. Under appropriate conditions, we obtain the wellposedness of such an equation and construct the time-consistent equilibrium strategy of closed-loop. Besides, we investigate the linear-quadratic problem as a special and important case.
Citation: Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651
References:
[1]

T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problem,, work in progress., ().

[2]

T. Björk, A. Murgoci and X. Y. Zhou, Mean variance portfolio optimization with state dependent risk aversion,, Math. Finance, 24 (2014), 1. doi: 10.1111/j.1467-9965.2011.00515.x.

[3]

I. Ekeland and T. Pirvu, Investment and consumption without commitment,, Math. Finan. Econ., 2 (2008), 57. doi: 10.1007/s11579-008-0014-6.

[4]

I. Ekeland and A. Lazrak, The golden rule when preferences are time inconsistent,, Math. Finan. Econ., 4 (2010), 29. doi: 10.1007/s11579-010-0034-x.

[5]

I. Ekeland, O. Mbodji and T. Pirvu, Time-consistent portfolio management,, SIAM J. Financial Math., 3 (2012), 1. doi: 10.1137/100810034.

[6]

S. Goldman, Consistent plans,, Review of Economic Studies, 47 (1980), 533. doi: 10.2307/2297304.

[7]

Y. Hu, H. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control,, SIAM J. Control Optim., 50 (2012), 1548. doi: 10.1137/110853960.

[8]

J. Ma and J. M. Yong, On linear, degenerate backward stochastic partial differential equations,, Probab. Theory Related Fields, 113 (1999), 135. doi: 10.1007/s004400050205.

[9]

J. Ma, H. Yin and J. F. Zhang, On non-Markovian forward-backward SDEs and backward stochastic PDEs,, Stochastic Processes and their Applications, 122 (2012), 3980. doi: 10.1016/j.spa.2012.08.002.

[10]

J. Ma, Z. Wu, D. T. Zhang and J. F. Zhang, On wellposedness of forward-backward SDEs-a unified approach,, Ann. Appl. Probab., 25 (2015), 2168.

[11]

I. Palacios-Huerta, Time-inconsistent preferences in Adam Smith and David Hume,, History of Political Economy, 35 (2003), 241. doi: 10.1215/00182702-35-2-241.

[12]

E. Pardoux, Equations Aux Derivées Partielles Stochastiques Non Linéaires Monotones,, Thèse d'Etat a l'Université Paris Sud, (1975).

[13]

B. Peleg and M. Yaari, On the existence of a consistent course of action when tastes are changing,, Review of Economic Studies, 40 (1973), 391. doi: 10.2307/2296458.

[14]

S. G. Peng, Stochastic Hamilton-Jacobi-Bellman equations,, SIAM J. Control and Optimization, 30 (1992), 284. doi: 10.1137/0330018.

[15]

R. Pollak, Consistent planning,, Rev. Econ. Stud., 35 (1968), 201. doi: 10.2307/2296548.

[16]

R. Strotz, Myopia and inconsistency in dynamic utility maximization,, Rev. Econ. Stud., 23 (1955), 165. doi: 10.2307/2295722.

[17]

J. M. Yong, A deterministic linear quadratic time-inconsistent optimal control problem,, Math. Control Related Fields, 1 (2011), 83. doi: 10.3934/mcrf.2011.1.83.

[18]

J. M. Yong, Deterministic time-inconsistent optimal control problems-An essentially cooperative approach,, Acta Math. Appl. Sinica Engl. Ser., 28 (2012), 1. doi: 10.1007/s10255-012-0120-3.

[19]

J. M. Yong, Time-inconsistent optimal control problems and the Equilibrium HJB equation,, Mathematical Control and Related Fields, 2 (2012), 271. doi: 10.3934/mcrf.2012.2.271.

show all references

References:
[1]

T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problem,, work in progress., ().

[2]

T. Björk, A. Murgoci and X. Y. Zhou, Mean variance portfolio optimization with state dependent risk aversion,, Math. Finance, 24 (2014), 1. doi: 10.1111/j.1467-9965.2011.00515.x.

[3]

I. Ekeland and T. Pirvu, Investment and consumption without commitment,, Math. Finan. Econ., 2 (2008), 57. doi: 10.1007/s11579-008-0014-6.

[4]

I. Ekeland and A. Lazrak, The golden rule when preferences are time inconsistent,, Math. Finan. Econ., 4 (2010), 29. doi: 10.1007/s11579-010-0034-x.

[5]

I. Ekeland, O. Mbodji and T. Pirvu, Time-consistent portfolio management,, SIAM J. Financial Math., 3 (2012), 1. doi: 10.1137/100810034.

[6]

S. Goldman, Consistent plans,, Review of Economic Studies, 47 (1980), 533. doi: 10.2307/2297304.

[7]

Y. Hu, H. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control,, SIAM J. Control Optim., 50 (2012), 1548. doi: 10.1137/110853960.

[8]

J. Ma and J. M. Yong, On linear, degenerate backward stochastic partial differential equations,, Probab. Theory Related Fields, 113 (1999), 135. doi: 10.1007/s004400050205.

[9]

J. Ma, H. Yin and J. F. Zhang, On non-Markovian forward-backward SDEs and backward stochastic PDEs,, Stochastic Processes and their Applications, 122 (2012), 3980. doi: 10.1016/j.spa.2012.08.002.

[10]

J. Ma, Z. Wu, D. T. Zhang and J. F. Zhang, On wellposedness of forward-backward SDEs-a unified approach,, Ann. Appl. Probab., 25 (2015), 2168.

[11]

I. Palacios-Huerta, Time-inconsistent preferences in Adam Smith and David Hume,, History of Political Economy, 35 (2003), 241. doi: 10.1215/00182702-35-2-241.

[12]

E. Pardoux, Equations Aux Derivées Partielles Stochastiques Non Linéaires Monotones,, Thèse d'Etat a l'Université Paris Sud, (1975).

[13]

B. Peleg and M. Yaari, On the existence of a consistent course of action when tastes are changing,, Review of Economic Studies, 40 (1973), 391. doi: 10.2307/2296458.

[14]

S. G. Peng, Stochastic Hamilton-Jacobi-Bellman equations,, SIAM J. Control and Optimization, 30 (1992), 284. doi: 10.1137/0330018.

[15]

R. Pollak, Consistent planning,, Rev. Econ. Stud., 35 (1968), 201. doi: 10.2307/2296548.

[16]

R. Strotz, Myopia and inconsistency in dynamic utility maximization,, Rev. Econ. Stud., 23 (1955), 165. doi: 10.2307/2295722.

[17]

J. M. Yong, A deterministic linear quadratic time-inconsistent optimal control problem,, Math. Control Related Fields, 1 (2011), 83. doi: 10.3934/mcrf.2011.1.83.

[18]

J. M. Yong, Deterministic time-inconsistent optimal control problems-An essentially cooperative approach,, Acta Math. Appl. Sinica Engl. Ser., 28 (2012), 1. doi: 10.1007/s10255-012-0120-3.

[19]

J. M. Yong, Time-inconsistent optimal control problems and the Equilibrium HJB equation,, Mathematical Control and Related Fields, 2 (2012), 271. doi: 10.3934/mcrf.2012.2.271.

[1]

Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435

[2]

Libin Mou, Jiongmin Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. Journal of Industrial & Management Optimization, 2006, 2 (1) : 95-117. doi: 10.3934/jimo.2006.2.95

[3]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[4]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[5]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[6]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[7]

Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95

[8]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[9]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[10]

Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203

[11]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[12]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[13]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[14]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[15]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[16]

Alain Bensoussan, Jens Frehse, Jens Vogelgesang. Systems of Bellman equations to stochastic differential games with non-compact coupling. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1375-1389. doi: 10.3934/dcds.2010.27.1375

[17]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[18]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2/3) : 295-313. doi: 10.3934/dcds.2007.18.295

[19]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[20]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with Lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]