2015, 5(1): 73-96. doi: 10.3934/mcrf.2015.5.73

Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result

1. 

Conservatoire National des Arts et Métiers, M2N, Case 2D 5000, 292 rue Saint-Martin, 75003 Paris, France

2. 

Department of Differential Equations, Dnipropetrovsk National University, Gagarin av., 72, 49010 Dnipropetrovsk

Received  March 2013 Revised  May 2014 Published  January 2015

In this paper we study an optimal control problem (OCP) associated to a linear elliptic equation on a bounded domain $\Omega$. The matrix-valued coefficients $A$ of such systems is our control in $\Omega$ and will be taken in $L^2(\Omega;\mathbb{R}^{N\times N})$ which in particular may comprises the case of unboundedness. Concerning the boundary value problems associated to the equations of this type, one may exhibit non-uniqueness of weak solutions--- namely, approximable solutions as well as another type of weak solutions that can not be obtained through the $L^\infty$-approximation of matrix $A$. Following the direct method in the calculus of variations, we show that the given OCP is well-possed and admits at least one solution. At the same time, optimal solutions to such problem may have a singular character in the above sense. In view of this we indicate two types of optimal solutions to the above problem: the so-called variational and non-variational solutions, and show that some of that optimal solutions can not be attainable through the $L^\infty$-approximation of the original problem.
Citation: Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73
References:
[1]

G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems,, Revista Matematica Complutense, 24 (2011), 83. doi: 10.1007/s13163-010-0030-y.

[2]

D. Cioranescu and F. Murat, A strange term coming from nowhere,, in Topics in the Mathematical Modelling of Composite Materials, (1997), 45.

[3]

J.-M. Coron, J.-M. Ghidaglia and F. Hélein, eds., Nematics,, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, (1991). doi: 10.1007/978-94-011-3428-6.

[4]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).

[5]

M. A. Fannjiang and G. C. Papanicolaou, Diffusion in turbulence,, Probab. Theory and Related Fields, 105 (1996), 279. doi: 10.1007/BF01192211.

[6]

T. Horsin and P. I. Kogut, On unbounded optimal controls in coefficients for ill-posed elliptic Dirichlet boundary value problems,, Bulletin of Dniproperovsk National University, 22 (2014), 3.

[7]

T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients,, C. R. Math. Acad. Sci. Paris, 347 (2009), 773. doi: 10.1016/j.crma.2009.05.008.

[8]

P. I. Kogut, On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients,, Descrete and Continuous Dynamical System, 34 (2014), 2105. doi: 10.3934/dcds.2014.34.2105.

[9]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis,, Systems & Control: Foundations & Applications, (2011). doi: 10.1007/978-0-8176-8149-4.

[10]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for Dirichlet elliptic problems: W-optimal solutions,, Journal of Optimization Theory and Applications, 150 (2011), 205. doi: 10.1007/s10957-011-9840-4.

[11]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for Dirichlet elliptic problems: H-optimal solutions,, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31. doi: 10.4171/ZAA/1447.

[12]

P. I. Kogut, O. P. Kupenko and G. Leugering, Optimal control in matrix-valued coefficients for nonlinear monotone problems: Optimality conditions. Part I,, Zeitschrift für Analysis und ihre Anwendungen, (2014).

[13]

P. I. Kogut, O. P. Kupenko and G. Leugering, Optimal control in matrix-valued coefficients for nonlinear monotone problems: Optimality conditions. Part II,, Zeitschrift für Analysis und ihre Anwendungen, (2014).

[14]

J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971).

[15]

J. Serrin, Pathological solutions of elliptic differential equations,, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385.

[16]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. of Functional Analysis, 173 (2000), 103. doi: 10.1006/jfan.1999.3556.

[17]

V. V. Zhikov, Diffusion in incompressible random flow,, Functional Analysis and Its Applications, 31 (1997), 156. doi: 10.1007/BF02465783.

[18]

V. V. Zhikov, Weighted Sobolev spaces,, Sbornik: Mathematics, 189 (1998), 27. doi: 10.1070/SM1998v189n08ABEH000344.

[19]

V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms,, Functional Analysis and Its Applications, 38 (2004), 173. doi: 10.1023/B:FAIA.0000042802.86050.5e.

show all references

References:
[1]

G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems,, Revista Matematica Complutense, 24 (2011), 83. doi: 10.1007/s13163-010-0030-y.

[2]

D. Cioranescu and F. Murat, A strange term coming from nowhere,, in Topics in the Mathematical Modelling of Composite Materials, (1997), 45.

[3]

J.-M. Coron, J.-M. Ghidaglia and F. Hélein, eds., Nematics,, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, (1991). doi: 10.1007/978-94-011-3428-6.

[4]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).

[5]

M. A. Fannjiang and G. C. Papanicolaou, Diffusion in turbulence,, Probab. Theory and Related Fields, 105 (1996), 279. doi: 10.1007/BF01192211.

[6]

T. Horsin and P. I. Kogut, On unbounded optimal controls in coefficients for ill-posed elliptic Dirichlet boundary value problems,, Bulletin of Dniproperovsk National University, 22 (2014), 3.

[7]

T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients,, C. R. Math. Acad. Sci. Paris, 347 (2009), 773. doi: 10.1016/j.crma.2009.05.008.

[8]

P. I. Kogut, On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients,, Descrete and Continuous Dynamical System, 34 (2014), 2105. doi: 10.3934/dcds.2014.34.2105.

[9]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis,, Systems & Control: Foundations & Applications, (2011). doi: 10.1007/978-0-8176-8149-4.

[10]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for Dirichlet elliptic problems: W-optimal solutions,, Journal of Optimization Theory and Applications, 150 (2011), 205. doi: 10.1007/s10957-011-9840-4.

[11]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for Dirichlet elliptic problems: H-optimal solutions,, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31. doi: 10.4171/ZAA/1447.

[12]

P. I. Kogut, O. P. Kupenko and G. Leugering, Optimal control in matrix-valued coefficients for nonlinear monotone problems: Optimality conditions. Part I,, Zeitschrift für Analysis und ihre Anwendungen, (2014).

[13]

P. I. Kogut, O. P. Kupenko and G. Leugering, Optimal control in matrix-valued coefficients for nonlinear monotone problems: Optimality conditions. Part II,, Zeitschrift für Analysis und ihre Anwendungen, (2014).

[14]

J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971).

[15]

J. Serrin, Pathological solutions of elliptic differential equations,, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385.

[16]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. of Functional Analysis, 173 (2000), 103. doi: 10.1006/jfan.1999.3556.

[17]

V. V. Zhikov, Diffusion in incompressible random flow,, Functional Analysis and Its Applications, 31 (1997), 156. doi: 10.1007/BF02465783.

[18]

V. V. Zhikov, Weighted Sobolev spaces,, Sbornik: Mathematics, 189 (1998), 27. doi: 10.1070/SM1998v189n08ABEH000344.

[19]

V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms,, Functional Analysis and Its Applications, 38 (2004), 173. doi: 10.1023/B:FAIA.0000042802.86050.5e.

[1]

Nobusumi Sagara. Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: An existence result. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1219-1232. doi: 10.3934/dcdss.2018069

[2]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 22 (11) : 1-22. doi: 10.3934/dcdsb.2018172

[3]

Dimitri Mugnai. Almost uniqueness result for reversed variational inequalities. Conference Publications, 2007, 2007 (Special) : 751-757. doi: 10.3934/proc.2007.2007.751

[4]

Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347

[5]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[6]

Ana Cristina Barroso, José Matias. Necessary and sufficient conditions for existence of solutions of a variational problem involving the curl. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 97-114. doi: 10.3934/dcds.2005.12.97

[7]

Tomas Godoy, Alfredo Guerin. Existence of nonnegative solutions to singular elliptic problems, a variational approach. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1505-1525. doi: 10.3934/dcds.2018062

[8]

J. Gwinner. On differential variational inequalities and projected dynamical systems - equivalence and a stability result. Conference Publications, 2007, 2007 (Special) : 467-476. doi: 10.3934/proc.2007.2007.467

[9]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[10]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[11]

Andrea Venturelli. A Variational proof of the existence of Von Schubart's orbit. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 699-717. doi: 10.3934/dcdsb.2008.10.699

[12]

Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109

[13]

Pierluigi Colli, Danielle Hilhorst, Françoise Issard-Roch, Giulio Schimperna. Long time convergence for a class of variational phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 63-81. doi: 10.3934/dcds.2009.25.63

[14]

Anne-Laure Bessoud. A variational convergence for bifunctionals. Application to a model of strong junction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 399-417. doi: 10.3934/dcdss.2012.5.399

[15]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[16]

Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227

[17]

Shige Peng, Mingyu Xu. Constrained BSDEs, viscosity solutions of variational inequalities and their applications. Mathematical Control & Related Fields, 2013, 3 (2) : 233-244. doi: 10.3934/mcrf.2013.3.233

[18]

Sergei Yu. Pilyugin. Variational shadowing. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 733-737. doi: 10.3934/dcdsb.2010.14.733

[19]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[20]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]