March  2015, 5(1): 73-96. doi: 10.3934/mcrf.2015.5.73

Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result

1. 

Conservatoire National des Arts et Métiers, M2N, Case 2D 5000, 292 rue Saint-Martin, 75003 Paris, France

2. 

Department of Differential Equations, Dnipropetrovsk National University, Gagarin av., 72, 49010 Dnipropetrovsk

Received  March 2013 Revised  May 2014 Published  January 2015

In this paper we study an optimal control problem (OCP) associated to a linear elliptic equation on a bounded domain $\Omega$. The matrix-valued coefficients $A$ of such systems is our control in $\Omega$ and will be taken in $L^2(\Omega;\mathbb{R}^{N\times N})$ which in particular may comprises the case of unboundedness. Concerning the boundary value problems associated to the equations of this type, one may exhibit non-uniqueness of weak solutions--- namely, approximable solutions as well as another type of weak solutions that can not be obtained through the $L^\infty$-approximation of matrix $A$. Following the direct method in the calculus of variations, we show that the given OCP is well-possed and admits at least one solution. At the same time, optimal solutions to such problem may have a singular character in the above sense. In view of this we indicate two types of optimal solutions to the above problem: the so-called variational and non-variational solutions, and show that some of that optimal solutions can not be attainable through the $L^\infty$-approximation of the original problem.
Citation: Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73
References:
[1]

G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems,, Revista Matematica Complutense, 24 (2011), 83.  doi: 10.1007/s13163-010-0030-y.  Google Scholar

[2]

D. Cioranescu and F. Murat, A strange term coming from nowhere,, in Topics in the Mathematical Modelling of Composite Materials, (1997), 45.   Google Scholar

[3]

J.-M. Coron, J.-M. Ghidaglia and F. Hélein, eds., Nematics,, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, (1991).  doi: 10.1007/978-94-011-3428-6.  Google Scholar

[4]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).   Google Scholar

[5]

M. A. Fannjiang and G. C. Papanicolaou, Diffusion in turbulence,, Probab. Theory and Related Fields, 105 (1996), 279.  doi: 10.1007/BF01192211.  Google Scholar

[6]

T. Horsin and P. I. Kogut, On unbounded optimal controls in coefficients for ill-posed elliptic Dirichlet boundary value problems,, Bulletin of Dniproperovsk National University, 22 (2014), 3.   Google Scholar

[7]

T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients,, C. R. Math. Acad. Sci. Paris, 347 (2009), 773.  doi: 10.1016/j.crma.2009.05.008.  Google Scholar

[8]

P. I. Kogut, On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients,, Descrete and Continuous Dynamical System, 34 (2014), 2105.  doi: 10.3934/dcds.2014.34.2105.  Google Scholar

[9]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis,, Systems & Control: Foundations & Applications, (2011).  doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[10]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for Dirichlet elliptic problems: W-optimal solutions,, Journal of Optimization Theory and Applications, 150 (2011), 205.  doi: 10.1007/s10957-011-9840-4.  Google Scholar

[11]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for Dirichlet elliptic problems: H-optimal solutions,, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31.  doi: 10.4171/ZAA/1447.  Google Scholar

[12]

P. I. Kogut, O. P. Kupenko and G. Leugering, Optimal control in matrix-valued coefficients for nonlinear monotone problems: Optimality conditions. Part I,, Zeitschrift für Analysis und ihre Anwendungen, (2014).   Google Scholar

[13]

P. I. Kogut, O. P. Kupenko and G. Leugering, Optimal control in matrix-valued coefficients for nonlinear monotone problems: Optimality conditions. Part II,, Zeitschrift für Analysis und ihre Anwendungen, (2014).   Google Scholar

[14]

J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971).   Google Scholar

[15]

J. Serrin, Pathological solutions of elliptic differential equations,, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385.   Google Scholar

[16]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. of Functional Analysis, 173 (2000), 103.  doi: 10.1006/jfan.1999.3556.  Google Scholar

[17]

V. V. Zhikov, Diffusion in incompressible random flow,, Functional Analysis and Its Applications, 31 (1997), 156.  doi: 10.1007/BF02465783.  Google Scholar

[18]

V. V. Zhikov, Weighted Sobolev spaces,, Sbornik: Mathematics, 189 (1998), 27.  doi: 10.1070/SM1998v189n08ABEH000344.  Google Scholar

[19]

V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms,, Functional Analysis and Its Applications, 38 (2004), 173.  doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar

show all references

References:
[1]

G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems,, Revista Matematica Complutense, 24 (2011), 83.  doi: 10.1007/s13163-010-0030-y.  Google Scholar

[2]

D. Cioranescu and F. Murat, A strange term coming from nowhere,, in Topics in the Mathematical Modelling of Composite Materials, (1997), 45.   Google Scholar

[3]

J.-M. Coron, J.-M. Ghidaglia and F. Hélein, eds., Nematics,, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, (1991).  doi: 10.1007/978-94-011-3428-6.  Google Scholar

[4]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).   Google Scholar

[5]

M. A. Fannjiang and G. C. Papanicolaou, Diffusion in turbulence,, Probab. Theory and Related Fields, 105 (1996), 279.  doi: 10.1007/BF01192211.  Google Scholar

[6]

T. Horsin and P. I. Kogut, On unbounded optimal controls in coefficients for ill-posed elliptic Dirichlet boundary value problems,, Bulletin of Dniproperovsk National University, 22 (2014), 3.   Google Scholar

[7]

T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients,, C. R. Math. Acad. Sci. Paris, 347 (2009), 773.  doi: 10.1016/j.crma.2009.05.008.  Google Scholar

[8]

P. I. Kogut, On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients,, Descrete and Continuous Dynamical System, 34 (2014), 2105.  doi: 10.3934/dcds.2014.34.2105.  Google Scholar

[9]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis,, Systems & Control: Foundations & Applications, (2011).  doi: 10.1007/978-0-8176-8149-4.  Google Scholar

[10]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for Dirichlet elliptic problems: W-optimal solutions,, Journal of Optimization Theory and Applications, 150 (2011), 205.  doi: 10.1007/s10957-011-9840-4.  Google Scholar

[11]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for Dirichlet elliptic problems: H-optimal solutions,, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31.  doi: 10.4171/ZAA/1447.  Google Scholar

[12]

P. I. Kogut, O. P. Kupenko and G. Leugering, Optimal control in matrix-valued coefficients for nonlinear monotone problems: Optimality conditions. Part I,, Zeitschrift für Analysis und ihre Anwendungen, (2014).   Google Scholar

[13]

P. I. Kogut, O. P. Kupenko and G. Leugering, Optimal control in matrix-valued coefficients for nonlinear monotone problems: Optimality conditions. Part II,, Zeitschrift für Analysis und ihre Anwendungen, (2014).   Google Scholar

[14]

J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971).   Google Scholar

[15]

J. Serrin, Pathological solutions of elliptic differential equations,, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385.   Google Scholar

[16]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. of Functional Analysis, 173 (2000), 103.  doi: 10.1006/jfan.1999.3556.  Google Scholar

[17]

V. V. Zhikov, Diffusion in incompressible random flow,, Functional Analysis and Its Applications, 31 (1997), 156.  doi: 10.1007/BF02465783.  Google Scholar

[18]

V. V. Zhikov, Weighted Sobolev spaces,, Sbornik: Mathematics, 189 (1998), 27.  doi: 10.1070/SM1998v189n08ABEH000344.  Google Scholar

[19]

V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms,, Functional Analysis and Its Applications, 38 (2004), 173.  doi: 10.1023/B:FAIA.0000042802.86050.5e.  Google Scholar

[1]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[2]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[3]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[4]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[5]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[6]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[7]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[10]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[11]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[12]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[13]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[14]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[15]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[16]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[17]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[18]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[19]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[20]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]