March  2016, 6(1): 113-141. doi: 10.3934/mcrf.2016.6.113

A relaxation result for state constrained inclusions in infinite dimension

1. 

CNRS, Institut de Mathématiques de Jussieu - Paris Rive Gauche, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris Diderot, Sorbonne Paris Cité, Case 247, 4 Place Jussieu, 75252 Paris, France

2. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy

3. 

UPMC Univ Paris 06, Institut de Mathématiques de Jussieu - Paris Rive Gauche, Sorbonne Universités, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, Case 247, 4 Place Jussieu, 75252 Paris, France

Received  December 2014 Revised  July 2015 Published  January 2016

In this paper we consider a state constrained differential inclusion $\dot x\in \mathbb A x+ F(t,x)$, with $\mathbb A$ generator of a strongly continuous semigroup in an infinite dimensional separable Banach space. Under an ``inward pointing condition'' we prove a relaxation result stating that the set of trajectories lying in the interior of the constraint is dense in the set of constrained trajectories of the convexified inclusion $\dot x\in \mathbb A x+ \overline{\textrm{co}}F(t,x)$. Some applications to control problems involving PDEs are given.
Citation: Helene Frankowska, Elsa M. Marchini, Marco Mazzola. A relaxation result for state constrained inclusions in infinite dimension. Mathematical Control & Related Fields, 2016, 6 (1) : 113-141. doi: 10.3934/mcrf.2016.6.113
References:
[1]

N. Alikakos, An application of the invariance principle to reaction-diffusion equations,, J. Differential Equations, 33 (1979), 201. doi: 10.1016/0022-0396(79)90088-3.

[2]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems,, Academic Press, (1993).

[3]

A. Bensoussan, G. Da Prato, M. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, vol.1,, Birkhäuser, (1992).

[4]

A. Bensoussan, G. Da Prato, M. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, vol.2,, Birkhäuser, (1993). doi: 10.1007/978-0-8176-4581-6.

[5]

P. Bettiol, A. Bressan and R. B. Vinter, On trajectories satisfying a state constraint: $W^{1,1}$ estimates and counter-examples,, SIAM J. Control Optim., 48 (2010), 4664. doi: 10.1137/090769788.

[6]

P. Bettiol, H. Frankowska and R. B. Vinter, $L^\infty$ estimates on trajectories confined to a closed subset,, J. Differential Equations, 252 (2012), 1912. doi: 10.1016/j.jde.2011.09.007.

[7]

L. Boltzmann, Zur theorie der elastischen nachwirkung,, Wien. Ber., 70 (1874), 275.

[8]

L. Boltzmann, Zur theorie der elastischen nachwirkung,, Wied. Ann., 5 (1878), 430.

[9]

P. L. Butzer and H. Berens, Semi-groups of Operators and Approximation,, Springer-Verlag, (1967). doi: 10.1007/978-3-642-64981-3.

[10]

P. Cannarsa, H. Frankowska and E. M. Marchini, On Bolza optimal control problems with constraints,, Discrete Contin. Dyn. Syst., 11 (2009), 629. doi: 10.3934/dcdsb.2009.11.629.

[11]

P. Cannarsa, H. Frankowska and E. M. Marchini, Optimal control for evolution equations with memory,, J. Evol. Equ., 13 (2013), 197.

[12]

F. H. Clarke, Optimization and Nonsmooth Analysis,, SIAM, (1990). doi: 10.1137/1.9781611971309.

[13]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Ration. Mech. Anal., 37 (1970), 297.

[14]

H. O. Fattorini, Infinite-dimensional Optimization and Control Theory,, Cambridge University Press, (1999). doi: 10.1017/CBO9780511574795.

[15]

H. Frankowska, A priori estimates for operational differential inclusions,, J. Differential Equations, 84 (1990), 100. doi: 10.1016/0022-0396(90)90129-D.

[16]

H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints,, Calc. Var. Partial Differential Equations, 46 (2013), 725. doi: 10.1007/s00526-012-0501-8.

[17]

H. Frankowska and M. Mazzola, On relations of the adjoint state to the value function for optimal control problems with state constraints,, Nonlinear Differ. Equ. Appl., 20 (2013), 361. doi: 10.1007/s00030-012-0183-0.

[18]

H. Frankowska and F. Rampazzo, Filippov's and Filippov-Wazewski's theorems on closed domains,, J. Differential Equations, 161 (2000), 449. doi: 10.1006/jdeq.2000.3711.

[19]

H. Frankowska and R. B. Vinter, Existence of neighbouring feasible trajectories: Applications to dynamic programming for state constrained optimal control problems,, J. Optim. Theory Appl., 104 (2000), 21. doi: 10.1023/A:1004668504089.

[20]

A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis,, Dover, (1975).

[21]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories,, Cambridge University Press, (2000).

[22]

X. Li and J. Yong, Optimal Control Theory for Infinite-Dimensional Systems,, Birkhäuser, (1995). doi: 10.1007/978-1-4612-4260-4.

[23]

R. H. Martin, Jr., Invariant sets for perturbed semigroups of linear operators,, Ann. Mat. Pura Appl., 105 (1975), 221. doi: 10.1007/BF02414931.

[24]

J. V. Outrata and Z. Schindler, An augmented Lagrangian method for a class of convex continuous optimal control problems,, Problems Control Inform. Theory, 10 (1981), 67.

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1.

[26]

D. Preiss, Differentiability of Lipschitz functions on Banach spaces,, J. Functional Anal., 91 (1990), 312. doi: 10.1016/0022-1236(90)90147-D.

[27]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1983).

[28]

H. M. Soner, Optimal control with state-space constraints,, SIAM J. Control Optim., 24 (1986), 552. doi: 10.1137/0324032.

[29]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer, (1988). doi: 10.1007/978-1-4612-0645-3.

[30]

V. Volterra, Sur les équations intégro-différentielles et leurs applications,, Acta Math., 35 (1912), 295. doi: 10.1007/BF02418820.

[31]

V. Volterra, Leçons sur les Fonctions De Lignes,, Gauthier-Villars, (1913).

[32]

A. P. Wierzbicki and S. Kurcyusz, Projection on a cone, penalty functionals and duality theory for problems with inequality constraints in Hilbert space,, SIAM J. Control Optim., 15 (1977), 25. doi: 10.1137/0315003.

show all references

References:
[1]

N. Alikakos, An application of the invariance principle to reaction-diffusion equations,, J. Differential Equations, 33 (1979), 201. doi: 10.1016/0022-0396(79)90088-3.

[2]

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems,, Academic Press, (1993).

[3]

A. Bensoussan, G. Da Prato, M. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, vol.1,, Birkhäuser, (1992).

[4]

A. Bensoussan, G. Da Prato, M. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, vol.2,, Birkhäuser, (1993). doi: 10.1007/978-0-8176-4581-6.

[5]

P. Bettiol, A. Bressan and R. B. Vinter, On trajectories satisfying a state constraint: $W^{1,1}$ estimates and counter-examples,, SIAM J. Control Optim., 48 (2010), 4664. doi: 10.1137/090769788.

[6]

P. Bettiol, H. Frankowska and R. B. Vinter, $L^\infty$ estimates on trajectories confined to a closed subset,, J. Differential Equations, 252 (2012), 1912. doi: 10.1016/j.jde.2011.09.007.

[7]

L. Boltzmann, Zur theorie der elastischen nachwirkung,, Wien. Ber., 70 (1874), 275.

[8]

L. Boltzmann, Zur theorie der elastischen nachwirkung,, Wied. Ann., 5 (1878), 430.

[9]

P. L. Butzer and H. Berens, Semi-groups of Operators and Approximation,, Springer-Verlag, (1967). doi: 10.1007/978-3-642-64981-3.

[10]

P. Cannarsa, H. Frankowska and E. M. Marchini, On Bolza optimal control problems with constraints,, Discrete Contin. Dyn. Syst., 11 (2009), 629. doi: 10.3934/dcdsb.2009.11.629.

[11]

P. Cannarsa, H. Frankowska and E. M. Marchini, Optimal control for evolution equations with memory,, J. Evol. Equ., 13 (2013), 197.

[12]

F. H. Clarke, Optimization and Nonsmooth Analysis,, SIAM, (1990). doi: 10.1137/1.9781611971309.

[13]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Ration. Mech. Anal., 37 (1970), 297.

[14]

H. O. Fattorini, Infinite-dimensional Optimization and Control Theory,, Cambridge University Press, (1999). doi: 10.1017/CBO9780511574795.

[15]

H. Frankowska, A priori estimates for operational differential inclusions,, J. Differential Equations, 84 (1990), 100. doi: 10.1016/0022-0396(90)90129-D.

[16]

H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints,, Calc. Var. Partial Differential Equations, 46 (2013), 725. doi: 10.1007/s00526-012-0501-8.

[17]

H. Frankowska and M. Mazzola, On relations of the adjoint state to the value function for optimal control problems with state constraints,, Nonlinear Differ. Equ. Appl., 20 (2013), 361. doi: 10.1007/s00030-012-0183-0.

[18]

H. Frankowska and F. Rampazzo, Filippov's and Filippov-Wazewski's theorems on closed domains,, J. Differential Equations, 161 (2000), 449. doi: 10.1006/jdeq.2000.3711.

[19]

H. Frankowska and R. B. Vinter, Existence of neighbouring feasible trajectories: Applications to dynamic programming for state constrained optimal control problems,, J. Optim. Theory Appl., 104 (2000), 21. doi: 10.1023/A:1004668504089.

[20]

A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis,, Dover, (1975).

[21]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories,, Cambridge University Press, (2000).

[22]

X. Li and J. Yong, Optimal Control Theory for Infinite-Dimensional Systems,, Birkhäuser, (1995). doi: 10.1007/978-1-4612-4260-4.

[23]

R. H. Martin, Jr., Invariant sets for perturbed semigroups of linear operators,, Ann. Mat. Pura Appl., 105 (1975), 221. doi: 10.1007/BF02414931.

[24]

J. V. Outrata and Z. Schindler, An augmented Lagrangian method for a class of convex continuous optimal control problems,, Problems Control Inform. Theory, 10 (1981), 67.

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1.

[26]

D. Preiss, Differentiability of Lipschitz functions on Banach spaces,, J. Functional Anal., 91 (1990), 312. doi: 10.1016/0022-1236(90)90147-D.

[27]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1983).

[28]

H. M. Soner, Optimal control with state-space constraints,, SIAM J. Control Optim., 24 (1986), 552. doi: 10.1137/0324032.

[29]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer, (1988). doi: 10.1007/978-1-4612-0645-3.

[30]

V. Volterra, Sur les équations intégro-différentielles et leurs applications,, Acta Math., 35 (1912), 295. doi: 10.1007/BF02418820.

[31]

V. Volterra, Leçons sur les Fonctions De Lignes,, Gauthier-Villars, (1913).

[32]

A. P. Wierzbicki and S. Kurcyusz, Projection on a cone, penalty functionals and duality theory for problems with inequality constraints in Hilbert space,, SIAM J. Control Optim., 15 (1977), 25. doi: 10.1137/0315003.

[1]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[2]

Thomas Lorenz. Partial differential inclusions of transport type with state constraints. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1309-1340. doi: 10.3934/dcdsb.2019018

[3]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[4]

Wojciech Kryszewski, Dorota Gabor, Jakub Siemianowski. The Krasnosel'skii formula for parabolic differential inclusions with state constraints. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 295-329. doi: 10.3934/dcdsb.2018021

[5]

Francesca Faraci, Antonio Iannizzotto. Three nonzero periodic solutions for a differential inclusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 779-788. doi: 10.3934/dcdss.2012.5.779

[6]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[7]

Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287

[8]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 881-888. doi: 10.3934/dcdss.2020051

[9]

Jean-François Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints. Networks & Heterogeneous Media, 2016, 11 (2) : 223-237. doi: 10.3934/nhm.2016.11.223

[10]

Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2018312

[11]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[12]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[13]

M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297

[14]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[15]

Hyun-Jung Kim. Stochastic parabolic Anderson model with time-homogeneous generalized potential: Mild formulation of solution. Communications on Pure & Applied Analysis, 2019, 18 (2) : 795-807. doi: 10.3934/cpaa.2019038

[16]

Gaston N'Guerekata. On weak-almost periodic mild solutions of some linear abstract differential equations. Conference Publications, 2003, 2003 (Special) : 672-677. doi: 10.3934/proc.2003.2003.672

[17]

Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467

[18]

Antonia Chinnì, Roberto Livrea. Multiple solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 753-764. doi: 10.3934/dcdss.2012.5.753

[19]

Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407

[20]

Jingzhen Liu, Ka-Fai Cedric Yiu. Optimal stochastic differential games with VaR constraints. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1889-1907. doi: 10.3934/dcdsb.2013.18.1889

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

[Back to Top]