March  2016, 6(1): 143-165. doi: 10.3934/mcrf.2016.6.143

Local exact controllability to positive trajectory for parabolic system of chemotaxis

1. 

Key Laboratory of System and Control, Academy of Mathematics and Systems Science, Academia Sinica, Beijing 100190, China

2. 

Department of Mathematics, Wuhan University of Technology, Wuhan 430070, China

Received  March 2015 Revised  June 2015 Published  January 2016

In this paper, we study controllability for a parabolic system of chemotaxis. With one control only, the local exact controllability to positive trajectory of the system is obtained by applying Kakutani's fixed point theorem and the null controllability of associated linearized parabolic system. The positivity of the state is shown to be remained in the state space. The control function is shown to be in $L^\infty(Q)$, which is estimated by using the methods of maximal regularity and $L^p$-$L^q$ estimate for parabolic equations.
Citation: Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control & Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143
References:
[1]

W. Arendt, Semigroups and evolution equations: functional calculus, regularity and kernel estimates, in, Handbook of Differential Equations: Evolutionary Equations, 1 (2004), 1.

[2]

V. Barbu, Controllability of parabolic and Navier-Stokes equations,, Sci. Math. Japon., 56 (2002), 143.

[3]

V. Barbu, Analysis and Control of Nonlinear Infinite-Dimensional Systems,, Academic Press, (1993).

[4]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.

[5]

J. -M. Coron, Control and Nonlinearity,, AMS, (2007).

[6]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Annales de l'Institut Henri Poincare(C) Non Linear Analysis, 17 (2000), 583. doi: 10.1016/S0294-1449(00)00117-7.

[7]

A. Fursikov and O. Yu Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series 34, (1996).

[8]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis,, Math. Nathr., 195 (1998), 77. doi: 10.1002/mana.19981950106.

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer-Verlag, (1981).

[10]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa CI. Sci., 24 (1997), 633.

[11]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[12]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103.

[13]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022.

[14]

O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations,, Publ. Res. Inst. Math. Sci., 39 (2003), 227. doi: 10.2977/prims/1145476103.

[15]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[16]

O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type,, AMS, (1968).

[17]

D. Lamberton, Equations d'évolution liné aires associées à les semi-groupes de contractions dans les espaces $L^p$,, J. Funct. Anal., 72 (1987), 252. doi: 10.1016/0022-1236(87)90088-7.

[18]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996). doi: 10.1142/3302.

[19]

M. Ma, C. Ou and Z. A. Wang, Stationary solutions of a volume filling chemotaxis model with logistic growth and their stability,, SIAM J. Appl. Math., 72 (2012), 740. doi: 10.1137/110843964.

[20]

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations,, Funkcial. Ekva., 44 (2001), 441.

[21]

F. Rothe, Global Solutions of Reaction-Diffusion Systems,, LNM 1072, (1072).

[22]

S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations,, J. Math. Anal. Appl., 256 (2001), 45. doi: 10.1006/jmaa.2000.7254.

[23]

A. Yagi, Norm behavior of solutions to a parabolic system of chemotaxis,, Math. Japon., 45 (1997), 241.

[24]

G. Wang and C. Zhang, Observability estimate from measurable sets in time for some evolution equations,, , ().

[25]

G. Wang and L. Zhang, Exact local controllability of a one-control reaction-diffusion system,, J. Optim. Theory Appl., 131 (2006), 453. doi: 10.1007/s10957-006-9161-1.

[26]

Z.-A. Wang, Mathematics of traveling waves in chemotaxis,, Discrete Contin. Dyn. Syst-Series B., 18 (2013), 601. doi: 10.3934/dcdsb.2013.18.601.

show all references

References:
[1]

W. Arendt, Semigroups and evolution equations: functional calculus, regularity and kernel estimates, in, Handbook of Differential Equations: Evolutionary Equations, 1 (2004), 1.

[2]

V. Barbu, Controllability of parabolic and Navier-Stokes equations,, Sci. Math. Japon., 56 (2002), 143.

[3]

V. Barbu, Analysis and Control of Nonlinear Infinite-Dimensional Systems,, Academic Press, (1993).

[4]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715.

[5]

J. -M. Coron, Control and Nonlinearity,, AMS, (2007).

[6]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Annales de l'Institut Henri Poincare(C) Non Linear Analysis, 17 (2000), 583. doi: 10.1016/S0294-1449(00)00117-7.

[7]

A. Fursikov and O. Yu Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series 34, (1996).

[8]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis,, Math. Nathr., 195 (1998), 77. doi: 10.1002/mana.19981950106.

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer-Verlag, (1981).

[10]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa CI. Sci., 24 (1997), 633.

[11]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3.

[12]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103.

[13]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022.

[14]

O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations,, Publ. Res. Inst. Math. Sci., 39 (2003), 227. doi: 10.2977/prims/1145476103.

[15]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[16]

O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type,, AMS, (1968).

[17]

D. Lamberton, Equations d'évolution liné aires associées à les semi-groupes de contractions dans les espaces $L^p$,, J. Funct. Anal., 72 (1987), 252. doi: 10.1016/0022-1236(87)90088-7.

[18]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996). doi: 10.1142/3302.

[19]

M. Ma, C. Ou and Z. A. Wang, Stationary solutions of a volume filling chemotaxis model with logistic growth and their stability,, SIAM J. Appl. Math., 72 (2012), 740. doi: 10.1137/110843964.

[20]

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations,, Funkcial. Ekva., 44 (2001), 441.

[21]

F. Rothe, Global Solutions of Reaction-Diffusion Systems,, LNM 1072, (1072).

[22]

S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations,, J. Math. Anal. Appl., 256 (2001), 45. doi: 10.1006/jmaa.2000.7254.

[23]

A. Yagi, Norm behavior of solutions to a parabolic system of chemotaxis,, Math. Japon., 45 (1997), 241.

[24]

G. Wang and C. Zhang, Observability estimate from measurable sets in time for some evolution equations,, , ().

[25]

G. Wang and L. Zhang, Exact local controllability of a one-control reaction-diffusion system,, J. Optim. Theory Appl., 131 (2006), 453. doi: 10.1007/s10957-006-9161-1.

[26]

Z.-A. Wang, Mathematics of traveling waves in chemotaxis,, Discrete Contin. Dyn. Syst-Series B., 18 (2013), 601. doi: 10.3934/dcdsb.2013.18.601.

[1]

Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743

[2]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[3]

Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665

[4]

Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

[5]

Cung The Anh, Vu Manh Toi. Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evolution Equations & Control Theory, 2017, 6 (3) : 357-379. doi: 10.3934/eect.2017019

[6]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[7]

Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555

[8]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[9]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[10]

S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590-601. doi: 10.3934/proc.2007.2007.590

[11]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[12]

David M. McClendon. An Ambrose-Kakutani representation theorem for countable-to-1 semiflows. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 251-268. doi: 10.3934/dcdss.2009.2.251

[13]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[14]

Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639

[15]

Jingqun Wang, Lixin Tian, Weiwei Guo. Global exact controllability and asympotic stabilization of the periodic two-component $\mu\rho$-Hunter-Saxton system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2129-2148. doi: 10.3934/dcdss.2016088

[16]

Pablo Angulo-Ardoy. On the set of metrics without local limiting Carleman weights. Inverse Problems & Imaging, 2017, 11 (1) : 47-64. doi: 10.3934/ipi.2017003

[17]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[18]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[19]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[20]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]