Advanced Search
Article Contents
Article Contents

Determination of time dependent factors of coefficients in fractional diffusion equations

Abstract / Introduction Related Papers Cited by
  • In the present paper, we consider initial-boundary value problems for partial differential equations with time-fractional derivatives which evolve in $Q=\Omega\times(0,T)$ where $\Omega$ is a bounded domain of $\mathbb{R}^d$ and $T>0$. We study the stability of the inverse problems of determining the time-dependent parameter in a source term or a coefficient of zero-th order term from observations of the solution at a point $x_0\in\overline{\Omega}$ for all $t\in(0,T)$.
    Mathematics Subject Classification: Primary: 35R30, 35R11.


    \begin{equation} \\ \end{equation}
  • [1]

    E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis, Water Resources Res., 28 (1992), 3293-3307.doi: 10.1029/92WR01757.


    R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.


    O. P. Agarwal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dyn., 29 (2002), 145-155.doi: 10.1023/A:1016539022492.


    S. Beckers and M. Yamamoto, Regularity and uniqueness of solution to linear diffusion equation with multiple time-fractional derivatives, International Series of Numerical Mathematics, 164 (2013), 45-55.


    H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.


    A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems, Sov. Math. Dokl., 24 (1981), 244-247.


    J. R. Cannon and S. P. Esteva, An inverse problem for the heat equation, Inverse Problems, 2 (1986), 395-403.doi: 10.1088/0266-5611/2/4/007.


    J. Carcione, F. Sanchez-Sesma, F. Luzón and J. Perez Gavilán, Theory and simulation of time-fractional fluid diffusion in porous media, Journal of Physics A: Mathematical and Theoretical, 46 (2013), 345501, 23pp.doi: 10.1088/1751-8113/46/34/345501.


    J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one dimensional fractional diffusion equation, Inverse Problems, 25 (2009), 115002, 16pp.doi: 10.1088/0266-5611/25/11/115002.


    M. Choulli and Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations, Math. Control Relat. Fields, 3 (2013), 143-160.doi: 10.3934/mcrf.2013.3.143.


    D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proceedings of the Japan Academy, 43 (1967), 82-86.doi: 10.3792/pja/1195521686.


    P. Gaitan and Y. Kian, A stability result for a time-dependent potential in a cylindrical domain, Inverse Problems, 29 (2013), 065006, 18pp.doi: 10.1088/0266-5611/29/6/065006.


    V. D. Gejji and H. Jafari, Boundary value problems for fractional diffusion-wave equation, Aust. J. Math. Anal. Appl., 3 (2006), 1-8.


    R. Gorenflo and F. Mainardi, Fractional diffusion processes: Probability distributions and continuous time random walk, in Processes with long range correlations (eds. G. Rangarajan and M. Ding), Vol. 621, Lecture Notes in Physics. Berlin: Springer, (2003), 148-166.doi: 10.1007/3-540-44832-2_8.


    Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Res., 34 (1998), 1027-1033.doi: 10.1029/98WR00214.


    Y. Hatano, J. Nakagawa, S. Wang and M. Yamamoto, Determination of order in fractional diffusion equation, J. Math-for-Ind. 5A, 5A (2013), 51-57.


    D. Henry, Geometric Theory of Semilinear Differential Equations, Springer-Verlag, Berlin, 1981.


    Z. Li, O. Yu. Imanuvilov and M. Yamamoto, Uniqueness in inverse boundary value problems for fractional diffusion equations, Inverse Problems, 32 (2016), 015004.doi: 10.1088/0266-5611/32/1/015004.


    J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vol. I, Dunod, Paris, 1968.


    Y. Liu, W. Rundell and M. Yamamoto, Strong maximum principle for fractional diffusion equations and an application to an inverse source problem, arXiv:1507.00845.


    Y. Luchko, Initial-boundary value problems for the generalized time-fractional diffusion equation, Journal of Mathematical Analysis and Applications, 374 (2011), 538-548.doi: 10.1016/j.jmaa.2010.08.048.


    Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), 218-223.doi: 10.1016/j.jmaa.2008.10.018.


    D. Matignon, Stability properties for generalized fractional differential systems, ESAIM:Proc., 5 (1998), 145-158.doi: 10.1051/proc:1998004.


    D. Matignon, An introduction to fractional calculus, in Scaling, Fractals and Wavelets, in Digital Signal and Image Processing Series (eds. P. Abry, P. Goncalvès and J. Lévy-Véhel), ISTE - Wiley, 7 (2009), 237-278.


    R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics reports, 339 (2000), 1-77.doi: 10.1016/S0370-1573(00)00070-3.


    K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993.


    L. Miller and M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation, Inverse Problems, 29 (2013), 075013, 8pp.doi: 10.1088/0266-5611/29/7/075013.


    I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.


    A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 2000.


    H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation, J. Phys. A, 27 (1994), 3407-3410.doi: 10.1088/0305-4470/27/10/017.


    S. Saitoh, V. K. Tuan and M. Yamamoto, Convolution inequalities and applications, J. Ineq. Pure and Appl. Math., 4 (2003), Art. 50, 8pp.


    S. Saitoh, V. K. Tuan and M. Yamamoto, Reverse convolution inequalities and applications to inverse heat source problems, J. Ineq. Pure and Appl. Math., 3 (2002), Art. 80, 11pp.


    K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.doi: 10.1016/j.jmaa.2011.04.058.


    S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Philadelphia, 1993.


    E. M. Stein, Singular Intearals and Differentiability Properties of Functions, Princeton university press, Princeton, 1970.


    R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech., 16 (1967), 1031-1060.


    X. Xu, J. Cheng and M. Yamamoto, Carleman estimate for a fractional diffusion equation with half order and application, Appl. Anal., 90 (2011), 1355-1371.doi: 10.1080/00036811.2010.507199.


    M. Yamamoto and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate, Inverse Problems, 28 (2012), 105010, 10pp.doi: 10.1088/0266-5611/28/10/105010.

  • 加载中

Article Metrics

HTML views() PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint