• Previous Article
    Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity
  • MCRF Home
  • This Issue
  • Next Article
    An infinite time horizon portfolio optimization model with delays
2016, 6(4): 595-628. doi: 10.3934/mcrf.2016017

Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions

1. 

heSam Université, Conservatoire National des Arts et Métiers, M2N, Case 2D 5000, 292 rue Saint-Martin, 75003 Paris, France

2. 

Department of Differential Equations, Dnipropetrovsk National University, Gagarin av., 72, 49010 Dnipropetrovsk

3. 

heSam Université Conservatoire National des Arts et Métiers, M2N, Case 2D 5000, 292 rue Saint-Martin, 75003 Paris, France

Received  October 2015 Revised  July 2016 Published  October 2016

In this paper we study we study a Dirichlet optimal control problem associated with a linear elliptic equation the coefficients of which we take as controls in the class of integrable functions. The characteristic feature of this control object is the fact that the skew-symmetric part of matrix-valued control $A(x)$ belongs to $L^2$-space (rather than $L^\infty)$. In spite of the fact that the equations of this type can exhibit non-uniqueness of weak solutions, the corresponding OCP, under rather general assumptions on the class of admissible controls, is well-posed and admits a nonempty set of solutions [9]. However, the optimal solutions to such problem may have a singular character. We show that some of optimal solutions can be attainable by solutions of special optimal control problems in perforated domains with fictitious boundary controls on the holes.
Citation: Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017
References:
[1]

R. Adams, Sobolev Spaces,, Academic Press, (1975).

[2]

M. Briane and J. Casado-Diaz, Uniform convergence of sequences of solutions of two-dimensional linear elliptic equations with unbounded coefficients,, J. of Diff. Equa., 245 (2008), 2038. doi: 10.1016/j.jde.2008.07.027.

[3]

G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems,, Revista Matematica Complutense, 24 (2011), 83. doi: 10.1007/s13163-010-0030-y.

[4]

D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford University Press, (1999).

[5]

A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications,, AMS, (2000).

[6]

A. D. Ioffe and V. M. Tichomirov, Theory of Extremal Problems,, North-Holland, (1979).

[7]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (2000).

[8]

T. Horsin and P. I. Kogut, On unbounded optimal controls in coefficients for ill-posed elliptic dirichlet boundary value problems,, Asymptotic Analysis, 98 (2016), 155. doi: 10.3233/ASY-161365.

[9]

T. Horsin and P. I. Kogut, Optimal $L^2$-control problem in coefficients for a linear elliptic equation. i. existence results,, Math. Control Relat. Fields, 5 (2015), 73. doi: 10.3934/mcrf.2015.5.73.

[10]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications,, Academic Press, (1980).

[11]

P. I. Kogut, On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients,, Descrete and Continuous Dynamical System, 34 (2014), 2105. doi: 10.3934/dcds.2014.34.2105.

[12]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis,, Birkhäuser, (2011). doi: 10.1007/978-0-8176-8149-4.

[13]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: W-optimal solutions,, Journal of Optimization Theory and Applications, 150 (2011), 205. doi: 10.1007/s10957-011-9840-4.

[14]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: H-optimal solutions,, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31. doi: 10.4171/ZAA/1447.

[15]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,, Springer-Verlag, (1972).

[16]

T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients,, C. R. Math. Acad. Sci. Paris, 347 (2009), 773. doi: 10.1016/j.crma.2009.05.008.

[17]

J. Serrin, Pathological solutions of elliptic differential equations,, Ann. Scuola Norm. Sup. Pisa, 3 (1964), 385.

[18]

J. L. Vazquez and N. B. Zographopoulos, Functional aspects of the Hardy inequlity. Appearance of a hidden energy,, Journal of Evolution Equations, 12 (2012), 713. doi: 10.1007/s00028-012-0151-5.

[19]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. of Functional Analysis, 173 (2000), 103. doi: 10.1006/jfan.1999.3556.

[20]

V. V. Zhikov, Diffusion in incompressible random flow,, Functional Analysis and Its Applications, 31 (1997), 156. doi: 10.1007/BF02465783.

[21]

V. V. Zhikov, Weighted Sobolev spaces,, Sbornik: Mathematics, 189 (1998), 27. doi: 10.1070/SM1998v189n08ABEH000344.

[22]

V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms,, Functional Analysis and Its Applications, 38 (2004), 173. doi: 10.1023/B:FAIA.0000042802.86050.5e.

[23]

V. V. Zhikov, private, communication., ().

[24]

Ph. Destuynder, Analyse, Traitement et Synthèse D'images Numériques,, Hermes, (2006).

[25]

O. Faugeras, Three-Dimensional Computer Vision,, MIT Press, (1993).

[26]

D. Cioranescu and F. Murat, A strange term coming from nowhere,, in Topic in the Math. Modelling of Composit Materials, 31 (1997), 45.

show all references

References:
[1]

R. Adams, Sobolev Spaces,, Academic Press, (1975).

[2]

M. Briane and J. Casado-Diaz, Uniform convergence of sequences of solutions of two-dimensional linear elliptic equations with unbounded coefficients,, J. of Diff. Equa., 245 (2008), 2038. doi: 10.1016/j.jde.2008.07.027.

[3]

G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems,, Revista Matematica Complutense, 24 (2011), 83. doi: 10.1007/s13163-010-0030-y.

[4]

D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford University Press, (1999).

[5]

A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications,, AMS, (2000).

[6]

A. D. Ioffe and V. M. Tichomirov, Theory of Extremal Problems,, North-Holland, (1979).

[7]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (2000).

[8]

T. Horsin and P. I. Kogut, On unbounded optimal controls in coefficients for ill-posed elliptic dirichlet boundary value problems,, Asymptotic Analysis, 98 (2016), 155. doi: 10.3233/ASY-161365.

[9]

T. Horsin and P. I. Kogut, Optimal $L^2$-control problem in coefficients for a linear elliptic equation. i. existence results,, Math. Control Relat. Fields, 5 (2015), 73. doi: 10.3934/mcrf.2015.5.73.

[10]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications,, Academic Press, (1980).

[11]

P. I. Kogut, On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients,, Descrete and Continuous Dynamical System, 34 (2014), 2105. doi: 10.3934/dcds.2014.34.2105.

[12]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis,, Birkhäuser, (2011). doi: 10.1007/978-0-8176-8149-4.

[13]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: W-optimal solutions,, Journal of Optimization Theory and Applications, 150 (2011), 205. doi: 10.1007/s10957-011-9840-4.

[14]

P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: H-optimal solutions,, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31. doi: 10.4171/ZAA/1447.

[15]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,, Springer-Verlag, (1972).

[16]

T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients,, C. R. Math. Acad. Sci. Paris, 347 (2009), 773. doi: 10.1016/j.crma.2009.05.008.

[17]

J. Serrin, Pathological solutions of elliptic differential equations,, Ann. Scuola Norm. Sup. Pisa, 3 (1964), 385.

[18]

J. L. Vazquez and N. B. Zographopoulos, Functional aspects of the Hardy inequlity. Appearance of a hidden energy,, Journal of Evolution Equations, 12 (2012), 713. doi: 10.1007/s00028-012-0151-5.

[19]

J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. of Functional Analysis, 173 (2000), 103. doi: 10.1006/jfan.1999.3556.

[20]

V. V. Zhikov, Diffusion in incompressible random flow,, Functional Analysis and Its Applications, 31 (1997), 156. doi: 10.1007/BF02465783.

[21]

V. V. Zhikov, Weighted Sobolev spaces,, Sbornik: Mathematics, 189 (1998), 27. doi: 10.1070/SM1998v189n08ABEH000344.

[22]

V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms,, Functional Analysis and Its Applications, 38 (2004), 173. doi: 10.1023/B:FAIA.0000042802.86050.5e.

[23]

V. V. Zhikov, private, communication., ().

[24]

Ph. Destuynder, Analyse, Traitement et Synthèse D'images Numériques,, Hermes, (2006).

[25]

O. Faugeras, Three-Dimensional Computer Vision,, MIT Press, (1993).

[26]

D. Cioranescu and F. Murat, A strange term coming from nowhere,, in Topic in the Math. Modelling of Composit Materials, 31 (1997), 45.

[1]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[2]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[3]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 22 (11) : 1-22. doi: 10.3934/dcdsb.2018172

[4]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[5]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

[6]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[7]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[8]

Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451

[9]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[10]

Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164

[11]

Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347

[12]

Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

[13]

Sarita Sharma, Anurag Jayswal, Sarita Choudhury. Sufficiency and mixed type duality for multiobjective variational control problems involving α-V-univexity. Evolution Equations & Control Theory, 2017, 6 (1) : 93-109. doi: 10.3934/eect.2017006

[14]

Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001

[15]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[16]

Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109

[17]

Pierluigi Colli, Danielle Hilhorst, Françoise Issard-Roch, Giulio Schimperna. Long time convergence for a class of variational phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 63-81. doi: 10.3934/dcds.2009.25.63

[18]

Anne-Laure Bessoud. A variational convergence for bifunctionals. Application to a model of strong junction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 399-417. doi: 10.3934/dcdss.2012.5.399

[19]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[20]

Shige Peng, Mingyu Xu. Constrained BSDEs, viscosity solutions of variational inequalities and their applications. Mathematical Control & Related Fields, 2013, 3 (2) : 233-244. doi: 10.3934/mcrf.2013.3.233

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]