June  2017, 7(2): 213-233. doi: 10.3934/mcrf.2017007

Regularity results for a time-optimal control problem in the space of probability measures

Department of Mathematics, University of Trento, Via Sommarive 14, Ⅰ-38123 Povo (Trento), Italy

Received  April 2016 Revised  September 2016 Published  April 2017

Fund Project: The author has been supported by INdAM-GNAMPA Project 2015: Set-valued Analysis and Optimal Transportation Theory Methods in Deterministic and Stochastics Models of Financial Markets with Transaction Costs

This paper investigates some regularity properties of the minimum time function for a time-optimal control problem in the space of probability measures endowed with the topology induced by the Wasserstein metric. The main motivation leading us to the generalization of the classical theory to this framework is to model situations in which we have only a probabilistic knowledge of the initial state, as it happens in real settings where noises and measurement errors may occur. We consider a deterministic evolution for a system ruled by a controlled continuity equation and, pursuing the goal of studying a generalization of the classical results for this setting, we prove an attainability result and a locally Lipschitz continuity property for the generalized minimum time function.

Citation: Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control & Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007
References:
[1]

L. Ambrosio, The flow associated to weakly differentiable vector fields: recent results and open problems, Contribute in Nonlinear Conservation Laws and Applications, IMA Vol. Math. Appl., Springer, New York, 153(2011), 181-193. doi: 10.1007/978-1-4419-9554-4_7.

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, 2nd edition, Birkhäuser Verlag, Basel, 2008.

[3]

P. Bernard, Young measures, superpositions and transport, Indiana Univ. Math. J., 57 (2008), 247-275. doi: 10.1512/iumj.2008.57.3163.

[4]

P. Cannarsa and C. Sinestrari, Convexity properties of the minimum time function, Calc. Var. Partial Differential Equations, 3 (1995), 273-298. doi: 10.1007/BF01189393.

[5]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58 Birkhäuser Boston, Inc. , Boston, MA, 2004.

[6]

G. Cavagnari and A. Marigonda, Measure-theoretic Lie brackets for nonsmooth vector fields, submitted.

[7]

G. Cavagnari and A. Marigonda, Time-optimal control problem in the space of probability measures, in Large-scale scientific computing, Lecture Notes in Computer Science, Springer, Heidelberg, 9374(2015), 109-116. doi: 10.1007/978-3-319-26520-9_11.

[8]

G. Cavagnari, A. Marigonda, K. T. Nguyen and F. S. Priuli, Generalized control systems in the space of probability measures, Set-Valued and Variational Analysis, to appear.

[9]

G. Cavagnari, A. Marigonda and G. Orlandi, Hamilton-Jacobi-Bellman equation for a time-optimal control problem in the space of probability measures, in Bociu L. , Désidéri JA. , Habbal A. (eds) System Modeling and Optimization. CSMO 2015. IFIP Advances in Information and Communication Technology, Springer, Cham, 494(2016), 200-208. doi: 10.1007/978-3-319-55795-3_18.

[10]

G. Cavagnari, A. Marigonda and B. Piccoli, Averaged time-optimal control problem in the space of positive Borel measures, submitted.

[11]

J. DolbeaultB. Nazaret and G. Savaré, A new class of transport distances between measures, Calc. Var. Partial Differential Equations, 34 (2009), 193-231. doi: 10.1007/s00526-008-0182-5.

[12]

S. Lisini and A. Marigonda, On a class of modified Wasserstein distance induced by concave mobility functions defined on bounded intervals, Manuscripta Mathematica, 133 (2010), 197-224. doi: 10.1007/s00229-010-0371-3.

[13]

A. Marigonda and S. Rigo, Controllability of some nonlinear systems with drift via generalized curvature properties, SIAM J. Control Optim., 53 (2015), 434-474. doi: 10.1137/130920691.

[14]

A. Marigonda and T. Thi Thien Le, Small-time local attainability for a class of control systems with state constraints ESAIM: Control, Optimization and Calc. of Var. , (2016), to appear. doi: 10.1051/cocv/2016022.

[15]

C. Villani, Optimal Transport: Old and New, Grundlehren der mathematischen Wissenschaften, 338 Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.

show all references

References:
[1]

L. Ambrosio, The flow associated to weakly differentiable vector fields: recent results and open problems, Contribute in Nonlinear Conservation Laws and Applications, IMA Vol. Math. Appl., Springer, New York, 153(2011), 181-193. doi: 10.1007/978-1-4419-9554-4_7.

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, 2nd edition, Birkhäuser Verlag, Basel, 2008.

[3]

P. Bernard, Young measures, superpositions and transport, Indiana Univ. Math. J., 57 (2008), 247-275. doi: 10.1512/iumj.2008.57.3163.

[4]

P. Cannarsa and C. Sinestrari, Convexity properties of the minimum time function, Calc. Var. Partial Differential Equations, 3 (1995), 273-298. doi: 10.1007/BF01189393.

[5]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58 Birkhäuser Boston, Inc. , Boston, MA, 2004.

[6]

G. Cavagnari and A. Marigonda, Measure-theoretic Lie brackets for nonsmooth vector fields, submitted.

[7]

G. Cavagnari and A. Marigonda, Time-optimal control problem in the space of probability measures, in Large-scale scientific computing, Lecture Notes in Computer Science, Springer, Heidelberg, 9374(2015), 109-116. doi: 10.1007/978-3-319-26520-9_11.

[8]

G. Cavagnari, A. Marigonda, K. T. Nguyen and F. S. Priuli, Generalized control systems in the space of probability measures, Set-Valued and Variational Analysis, to appear.

[9]

G. Cavagnari, A. Marigonda and G. Orlandi, Hamilton-Jacobi-Bellman equation for a time-optimal control problem in the space of probability measures, in Bociu L. , Désidéri JA. , Habbal A. (eds) System Modeling and Optimization. CSMO 2015. IFIP Advances in Information and Communication Technology, Springer, Cham, 494(2016), 200-208. doi: 10.1007/978-3-319-55795-3_18.

[10]

G. Cavagnari, A. Marigonda and B. Piccoli, Averaged time-optimal control problem in the space of positive Borel measures, submitted.

[11]

J. DolbeaultB. Nazaret and G. Savaré, A new class of transport distances between measures, Calc. Var. Partial Differential Equations, 34 (2009), 193-231. doi: 10.1007/s00526-008-0182-5.

[12]

S. Lisini and A. Marigonda, On a class of modified Wasserstein distance induced by concave mobility functions defined on bounded intervals, Manuscripta Mathematica, 133 (2010), 197-224. doi: 10.1007/s00229-010-0371-3.

[13]

A. Marigonda and S. Rigo, Controllability of some nonlinear systems with drift via generalized curvature properties, SIAM J. Control Optim., 53 (2015), 434-474. doi: 10.1137/130920691.

[14]

A. Marigonda and T. Thi Thien Le, Small-time local attainability for a class of control systems with state constraints ESAIM: Control, Optimization and Calc. of Var. , (2016), to appear. doi: 10.1051/cocv/2016022.

[15]

C. Villani, Optimal Transport: Old and New, Grundlehren der mathematischen Wissenschaften, 338 Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.

[1]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[2]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[3]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[4]

Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019066

[5]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[6]

Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

[7]

Maciej Smołka. Asymptotic behaviour of optimal solutions of control problems governed by inclusions. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 641-652. doi: 10.3934/dcds.1998.4.641

[8]

Thomas Lorenz. Partial differential inclusions of transport type with state constraints. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1309-1340. doi: 10.3934/dcdsb.2019018

[9]

Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305

[10]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[11]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[12]

Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096

[13]

Piermarco Cannarsa, Cristina Pignotti, Carlo Sinestrari. Semiconcavity for optimal control problems with exit time. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 975-997. doi: 10.3934/dcds.2000.6.975

[14]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[15]

Piermarco Cannarsa, Carlo Sinestrari. On a class of nonlinear time optimal control problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 285-300. doi: 10.3934/dcds.1995.1.285

[16]

Qinglan Xia. An application of optimal transport paths to urban transport networks. Conference Publications, 2005, 2005 (Special) : 904-910. doi: 10.3934/proc.2005.2005.904

[17]

Jerzy Klamka, Helmut Maurer, Andrzej Swierniak. Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 195-216. doi: 10.3934/mbe.2017013

[18]

Wilfrid Gangbo, Andrzej Świech. Optimal transport and large number of particles. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1397-1441. doi: 10.3934/dcds.2014.34.1397

[19]

Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989

[20]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (12)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]