September  2018, 8(3&4): 965-999. doi: 10.3934/mcrf.2018042

Switching between a pair of stocks: An optimal trading rule

Department of Mathematics, University of Georgia, Athens, GA 30602, USA

Received  July 2017 Revised  June 2018 Published  September 2018

This paper is about a stock trading rule involving two stocks. The trader may have a long position in either stock or in cash. She may also switch between them any time. Her objective is to trade over time to maximize an expected return. In this paper, we reduce the problem to the optimal trading control problem under a geometric Brownian motion model with regime switching. We use a two-state Markov chain to capture the general market modes. In particular, a single market cycle consisting of a bull market followed by a bear market is considered. We also impose a fixed percentage cost on each transaction. We focus on simple threshold-type policies and study all possible combinations. We establish algebraic equations to characterize these threshold levels. We also present sufficient conditions that guarantee the optimality of these policies. Finally, some numerical examples are provided to illustrate our results.

Citation: Jingzhi Tie, Qing Zhang. Switching between a pair of stocks: An optimal trading rule. Mathematical Control & Related Fields, 2018, 8 (3&4) : 965-999. doi: 10.3934/mcrf.2018042
References:
[1]

B. R. Barmish and J. A. Primbs, On a new paradigm for stock trading via a model-free feedback controller, IEEE Trans. Automatic Control, 61 (2016), 662-676.  doi: 10.1109/TAC.2015.2444078.  Google Scholar

[2]

M. DaiQ. Zhang and Q. Zhu, Trend following trading under a regime switching model, SIAM Journal on Financial Mathematics, 1 (2010), 780-810.  doi: 10.1137/090770552.  Google Scholar

[3]

M. H. A. Davis and A. R. Norman, Portfolio selection with transaction costs, Mathematics of Operations Research, 15 (1990), 676-713.  doi: 10.1287/moor.15.4.676.  Google Scholar

[4]

X. Guo and Q. Zhang, Optimal selling rules in a regime switching model, IEEE Trans. Automatic Control, 50 (2005), 1450-1455.  doi: 10.1109/TAC.2005.854657.  Google Scholar

[5]

Y. Hu and B. Øksendal, Optimal time to invest when the price processes are geometric Brownian motions, Finance and Stochastics, 2 (1998), 295-310.  doi: 10.1007/s007800050042.  Google Scholar

[6]

S. Iwarere and B. R. Barmish, A confidence interval triggering method for stock trading via feedback control, Proc. American Control Conference, Baltimore, MD, (2010), 6910-6916. doi: 10.1109/ACC.2010.5531311.  Google Scholar

[7]

A. Merhi and M. Zervos, A model for reversible investment capacity expansion, SIAM J. Control and Optimization, 46 (2007), 839-876.  doi: 10.1137/050640758.  Google Scholar

[8]

D. NguyenJ. Tie and Q. Zhang, An optimal trading rule under a switchable mean-reversion model, Journal of Optimization Theory and Applications, 161 (2014), 145-163.  doi: 10.1007/s10957-012-0260-x.  Google Scholar

[9]

B. Øksendal, Stochastic Differential Equations, 6th Ed., Springer-Verlag, New York, 2003. doi: 10.1007/978-3-642-14394-6.  Google Scholar

[10]

S. E. Shreve and H. M. Soner, Optimal investment and consumption with transaction costs, Annals of Applied Probability, 4 (1994), 609-692.  doi: 10.1214/aoap/1177004966.  Google Scholar

[11]

Q. S. Song and Q. Zhang, An optimal pairs-trading rule, Automatica, 49 (2013), 3007-3014.  doi: 10.1016/j.automatica.2013.07.012.  Google Scholar

[12]

E. M. Stein and R. Shakarchi, Functional Analysis: Introduction to Further Topics in Analysis, Princeton University Press, Princeton and Oxford, 2011.  Google Scholar

[13]

J. TieH. Zhang and Q. Zhang, An Optimal strategy for pairs-trading under geometric Brownian motions, Journal of Optimization Theory and Applications, (2017), 1-22.  doi: 10.1007/s10957-017-1065-8.  Google Scholar

[14]

H. Zhang and Q. Zhang, Trading a mean-reverting asset: Buy low and sell high, Automatica, 44 (2008), 1511-1518.  doi: 10.1016/j.automatica.2007.11.003.  Google Scholar

[15]

Q. Zhang, Stock trading: An optimal selling rule, SIAM J. Control and Optimization, 40 (2001), 64-87.  doi: 10.1137/S0363012999356325.  Google Scholar

show all references

References:
[1]

B. R. Barmish and J. A. Primbs, On a new paradigm for stock trading via a model-free feedback controller, IEEE Trans. Automatic Control, 61 (2016), 662-676.  doi: 10.1109/TAC.2015.2444078.  Google Scholar

[2]

M. DaiQ. Zhang and Q. Zhu, Trend following trading under a regime switching model, SIAM Journal on Financial Mathematics, 1 (2010), 780-810.  doi: 10.1137/090770552.  Google Scholar

[3]

M. H. A. Davis and A. R. Norman, Portfolio selection with transaction costs, Mathematics of Operations Research, 15 (1990), 676-713.  doi: 10.1287/moor.15.4.676.  Google Scholar

[4]

X. Guo and Q. Zhang, Optimal selling rules in a regime switching model, IEEE Trans. Automatic Control, 50 (2005), 1450-1455.  doi: 10.1109/TAC.2005.854657.  Google Scholar

[5]

Y. Hu and B. Øksendal, Optimal time to invest when the price processes are geometric Brownian motions, Finance and Stochastics, 2 (1998), 295-310.  doi: 10.1007/s007800050042.  Google Scholar

[6]

S. Iwarere and B. R. Barmish, A confidence interval triggering method for stock trading via feedback control, Proc. American Control Conference, Baltimore, MD, (2010), 6910-6916. doi: 10.1109/ACC.2010.5531311.  Google Scholar

[7]

A. Merhi and M. Zervos, A model for reversible investment capacity expansion, SIAM J. Control and Optimization, 46 (2007), 839-876.  doi: 10.1137/050640758.  Google Scholar

[8]

D. NguyenJ. Tie and Q. Zhang, An optimal trading rule under a switchable mean-reversion model, Journal of Optimization Theory and Applications, 161 (2014), 145-163.  doi: 10.1007/s10957-012-0260-x.  Google Scholar

[9]

B. Øksendal, Stochastic Differential Equations, 6th Ed., Springer-Verlag, New York, 2003. doi: 10.1007/978-3-642-14394-6.  Google Scholar

[10]

S. E. Shreve and H. M. Soner, Optimal investment and consumption with transaction costs, Annals of Applied Probability, 4 (1994), 609-692.  doi: 10.1214/aoap/1177004966.  Google Scholar

[11]

Q. S. Song and Q. Zhang, An optimal pairs-trading rule, Automatica, 49 (2013), 3007-3014.  doi: 10.1016/j.automatica.2013.07.012.  Google Scholar

[12]

E. M. Stein and R. Shakarchi, Functional Analysis: Introduction to Further Topics in Analysis, Princeton University Press, Princeton and Oxford, 2011.  Google Scholar

[13]

J. TieH. Zhang and Q. Zhang, An Optimal strategy for pairs-trading under geometric Brownian motions, Journal of Optimization Theory and Applications, (2017), 1-22.  doi: 10.1007/s10957-017-1065-8.  Google Scholar

[14]

H. Zhang and Q. Zhang, Trading a mean-reverting asset: Buy low and sell high, Automatica, 44 (2008), 1511-1518.  doi: 10.1016/j.automatica.2007.11.003.  Google Scholar

[15]

Q. Zhang, Stock trading: An optimal selling rule, SIAM J. Control and Optimization, 40 (2001), 64-87.  doi: 10.1137/S0363012999356325.  Google Scholar

Figure 1.  Switching Regions ($\alpha _t = 1$)
Figure 2.  Value Functions
Figure 3.  ${\bf{S}}^1$ = QQQ, ${\bf{S}}^2$ = SPY: The threshold levels ${b_1},{b_2}$ and the corresponding equity curve
Figure 4.  ${\bf{S}}^1$ = QQQ, ${\bf{S}}^2$ = SPY: The threshold levels ${b_1},{b_2}$ and the corresponding equity curve
Figure 5.  log(Daily closing prices) of KO and PEP
Figure 6.  ${\bf{S}}^1$ = KO, ${\bf{S}}^2$ = PEP: The threshold levels $b_1,b_2,s_1,s_2$ and the corresponding equity curve
Table 1.  $(b_1,b_2,s_1,s_2)$ with varying $\mu_1$
$\mu_1$ 0.1548 0.1648 0.1748 0.1848 0.1948
$s_1$ 2.0767 2.2457 2.4152 2.5851 2.7557
$b_2$ 1.9031 2.0666 2.2309 2.3961 2.5620
$b_1$ 1.8936 2.0566 2.2203 2.3849 2.5503
$s_2$ 1.6435 1.7812 1.9193 2.0576 2.1964
$\mu_1$ 0.1548 0.1648 0.1748 0.1848 0.1948
$s_1$ 2.0767 2.2457 2.4152 2.5851 2.7557
$b_2$ 1.9031 2.0666 2.2309 2.3961 2.5620
$b_1$ 1.8936 2.0566 2.2203 2.3849 2.5503
$s_2$ 1.6435 1.7812 1.9193 2.0576 2.1964
Table 2.  $(b_1,b_2,s_1,s_2)$ with varying $\mu_2$
$\mu_2$ 0.0787 0.0887 0.0987 0.1087 0.1187
$s_1$ 3.4930 2.8570 2.4152 2.0905 1.8420
$b_2$ 3.2466 2.6468 2.2309 1.9261 1.6932
$b_1$ 3.2296 2.6336 2.2203 1.9173 1.6857
$s_2$ 2.7063 2.2459 1.9193 1.6753 1.4862
$\mu_2$ 0.0787 0.0887 0.0987 0.1087 0.1187
$s_1$ 3.4930 2.8570 2.4152 2.0905 1.8420
$b_2$ 3.2466 2.6468 2.2309 1.9261 1.6932
$b_1$ 3.2296 2.6336 2.2203 1.9173 1.6857
$s_2$ 2.7063 2.2459 1.9193 1.6753 1.4862
Table 3.  $(b_1,b_2,s_1,s_2)$ with varying $\sigma_{11}$
$\sigma_{11}$ 0.2607 0.2707 0.2807 0.2907 0.3007
$s_1$ 2.4001 2.4076 2.4152 2.4227 2.4302
$b_2$ 2.2291 2.2300 2.2309 2.2320 2.2331
$b_1$ 2.2199 2.2201 2.2203 2.2206 2.2210
$s_2$ 1.9350 1.9270 1.9193 1.9116 1.9042
$\sigma_{11}$ 0.2607 0.2707 0.2807 0.2907 0.3007
$s_1$ 2.4001 2.4076 2.4152 2.4227 2.4302
$b_2$ 2.2291 2.2300 2.2309 2.2320 2.2331
$b_1$ 2.2199 2.2201 2.2203 2.2206 2.2210
$s_2$ 1.9350 1.9270 1.9193 1.9116 1.9042
Table 4.  $(b_1,b_2,s_1,s_2)$ with varying $\sigma_{22}$
$\sigma_{22}$ 0.1071 0.1171 0.1271 0.1371 0.1471
$s_1$ 2.4132 2.4140 2.4152 2.4167 2.4187
$b_2$ 2.2307 2.2308 2.2309 2.2312 2.2314
$b_1$ 2.2203 2.2203 2.2203 2.2204 2.2205
$s_2$ 1.9213 1.9205 1.9193 1.9177 1.9157
$\sigma_{22}$ 0.1071 0.1171 0.1271 0.1371 0.1471
$s_1$ 2.4132 2.4140 2.4152 2.4167 2.4187
$b_2$ 2.2307 2.2308 2.2309 2.2312 2.2314
$b_1$ 2.2203 2.2203 2.2203 2.2204 2.2205
$s_2$ 1.9213 1.9205 1.9193 1.9177 1.9157
Table 5.  $(b_1,b_2,s_1,s_2)$ with varying $\sigma_{12}( = \sigma_{21})$
$\sigma_{12}(=\sigma_{21})$ 0.0729 0.0829 0.0929 0.1029 0.1129
$s_1$ 2.4333 2.4242 2.4152 2.4064 2.3978
$b_2$ 2.2336 2.2322 2.2309 2.2298 2.2288
$b_1$ 2.2211 2.2207 2.2203 2.2201 2.2199
$s_2$ 1.9011 1.9102 1.9193 1.9283 1.9374
$\sigma_{12}(=\sigma_{21})$ 0.0729 0.0829 0.0929 0.1029 0.1129
$s_1$ 2.4333 2.4242 2.4152 2.4064 2.3978
$b_2$ 2.2336 2.2322 2.2309 2.2298 2.2288
$b_1$ 2.2211 2.2207 2.2203 2.2201 2.2199
$s_2$ 1.9011 1.9102 1.9193 1.9283 1.9374
Table 6.  $(b_1,b_2,s_1,s_2)$ with varying $\rho$
$\rho$ 0.01 0.02 0.03 0.04 0.05
$s_1$ 2.1006 2.2373 2.4152 2.6561 3.0009
$b_2$ 1.9439 2.0685 2.2309 2.4515 2.7681
$b_1$ 1.9356 2.0592 2.2203 2.4391 2.7529
$s_2$ 1.7008 1.7961 1.9193 2.0844 2.3174
$\rho$ 0.01 0.02 0.03 0.04 0.05
$s_1$ 2.1006 2.2373 2.4152 2.6561 3.0009
$b_2$ 1.9439 2.0685 2.2309 2.4515 2.7681
$b_1$ 1.9356 2.0592 2.2203 2.4391 2.7529
$s_2$ 1.7008 1.7961 1.9193 2.0844 2.3174
Table 7.  $(b_1,b_2,s_1,s_2)$ with varying $\lambda $
$\lambda $ 0.8 0.9 1.0 1.1 1.2
$s_1$ 2.4070 2.4111 2.4152 2.4193 2.4201
$b_2$ 2.2266 2.2288 2.2309 2.2332 2.2336
$b_1$ 2.2158 2.2181 2.2203 2.2226 2.2231
$s_2$ 1.9208 1.9200 1.9193 1.9184 1.9183
$\lambda $ 0.8 0.9 1.0 1.1 1.2
$s_1$ 2.4070 2.4111 2.4152 2.4193 2.4201
$b_2$ 2.2266 2.2288 2.2309 2.2332 2.2336
$b_1$ 2.2158 2.2181 2.2203 2.2226 2.2231
$s_2$ 1.9208 1.9200 1.9193 1.9184 1.9183
Table 8.  $(b_1,b_2,s_1,s_2)$ with varying $K$
$K$ 0.00050 0.00075 0.00100 0.00500 0.01000
$s_1$ 2.3315 2.3762 2.4152 2.8814 3.4914
$b_2$ 2.1908 2.2119 2.2309 2.4752 2.7979
$b_1$ 2.1840 2.2031 2.2203 2.4459 2.7528
$s_2$ 1.9543 1.9347 1.9193 1.7878 1.6694
$K$ 0.00050 0.00075 0.00100 0.00500 0.01000
$s_1$ 2.3315 2.3762 2.4152 2.8814 3.4914
$b_2$ 2.1908 2.2119 2.2309 2.4752 2.7979
$b_1$ 2.1840 2.2031 2.2203 2.4459 2.7528
$s_2$ 1.9543 1.9347 1.9193 1.7878 1.6694
[1]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[2]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[3]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[4]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[5]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[6]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021080

[7]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[8]

Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083

[9]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[10]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[11]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[12]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[13]

George A. Anastassiou. Iyengar-Hilfer fractional inequalities. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021004

[14]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[15]

Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021065

[16]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[17]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2993-3020. doi: 10.3934/dcds.2020394

[18]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[19]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[20]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (204)
  • HTML views (378)
  • Cited by (0)

Other articles
by authors

[Back to Top]