# American Institute of Mathematical Sciences

March  2019, 9(1): 97-116. doi: 10.3934/mcrf.2019005

## Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions

 Lebanese University-Faculty of Sciences, Khawarezmi laboratory for mathematics and applications-(KALMA), Beirut, Lebanon

Received  November 2017 Revised  April 2018 Published  August 2018

Fund Project: This research is supported by the Lebanese University.

In this paper, we consider a multidimensional wave equation with boundary fractional damping acting on a part of the boundary of the domain. First, combining a general criteria of Arendt and Batty with Holmgren's theorem we show the strong stability of our system in the absence of the compactness of the resolvent and without any additional geometric conditions. Next, we show that our system is not uniformly stable in general, since it is the case of the interval. Hence, we look for a polynomial decay rate for smooth initial data for our system by applying a frequency domain approach combining with a multiplier method. Indeed, by assuming that the boundary control region satisfy some geometric conditions and by using the exponential decay of the wave equation with a standard damping, we establish a polynomial energy decay rate for smooth solutions, which depends on the order of the fractional derivative.

Citation: Mohammad Akil, Ali Wehbe. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Mathematical Control & Related Fields, 2019, 9 (1) : 97-116. doi: 10.3934/mcrf.2019005
##### References:
 [1] Z. Abbas and S. Nicaise, The multidimensional wave equation with generalized acoustic boundary conditions, SIAM J. Control Optim., 53 (2015), 2582-2607.  doi: 10.1137/140971348.  Google Scholar [2] Z. Achouri, N.-E. Amroun and A. Benaissa, The Euler-Bernouilli beam equation with boundary dissipation of fractional derivative type, Mathematical Methods in the Applied Sciences, 40 (2017), 3837-3854.  doi: 10.1002/mma.4267.  Google Scholar [3] F. Alabau-Boussouira, J. Prüss and R. Zacher, Exponential and Polynomial stability of a wave equation for boundary memory damping with singular kernels, Comptes Rendues Mathématiques, 347 (2009), 277-282.  doi: 10.1016/j.crma.2009.01.005.  Google Scholar [4] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Transactions of the American Mathematical Society, 306 (1988), 837-852.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar [5] R. L. Bagley and P. J. Torvik, A different approach to the analysis of viscoelasticity damped structures, The American Institue of Aeronautics and Astronautics, 21 (1983), 741-748.   Google Scholar [6] R. L. Bagley and P. J. Torvik, On the appearance of the fractional derivative in the behavior of real material, J. Appl. Mechn., 51 (1983), 294-298.   Google Scholar [7] R. L. Bagley and P. J. Torvik, A Theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheonology, 27 (1983), 201-210.  doi: 10.1122/1.549724.  Google Scholar [8] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim, 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar [9] A. Bátkai, K. J. Engel, J. Prüss and R. Shnaubelt, Polynomial stability of operator semigroup, Mth. Nashr., 279 (2006), 1425-1440.  doi: 10.1002/mana.200410429.  Google Scholar [10] C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semigroup on Banach spaces, Journal of Evolution Equations, 8 (2008), 765-780.  doi: 10.1007/s00028-008-0424-1.  Google Scholar [11] C. D. Benchimol, A note on weak stabilizability of contraction semigroups, SIAM J. Control Optimization, 16 (1978), 373-379.  doi: 10.1137/0316023.  Google Scholar [12] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann, 347 (2010), 455-478.  doi: 10.1007/s00208-009-0439-0.  Google Scholar [13] H. Brezis, Analyse Fonctionelle, Théorie et Applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar [14] M. Caputo, Vibrations of an infinite plate with a frequency independant, Q. J. Acoustic Soc. Am., 60 (1976), 634-639.   Google Scholar [15] H. Dai and H. Zhang, Exponential growth for wave equation with fractional boundary dissipation and boundary source term, Boundary Value Problems, 2014 (2014), 1-8.  doi: 10.1186/s13661-014-0138-y.  Google Scholar [16] F. L. Huang, Characteristic conditions for exponential stability of linear dynamical system in Hilbert space, Ann. Differential Equations, 1 (1985), 43-56.   Google Scholar [17] J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations, 50 (1983), 163-182.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar [18] I. Lasiecka and R. Triggiani, Uniform Stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224.  doi: 10.1007/BF01182480.  Google Scholar [19] J. L. Lions and E. Magenes, Problèmes aux limites non-homogènes et applications, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1 (1968), ⅹⅹ+372 pp.  Google Scholar [20] Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. angew. Math. Phys., 56 (2005), 630-644.  doi: 10.1007/s00033-004-3073-4.  Google Scholar [21] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman and Hall/CRC Research Notes in Mathematics, Boca Raton, FL, 1999.  Google Scholar [22] P. Loreti and B. Rao, Optimal energy decay rate for partially damped systems by spectral compensation, SIAM J. Control Optim., 45 (2006), 1612-1632.  doi: 10.1137/S0363012903437319.  Google Scholar [23] F. Mainardi and E. Bonetti, The application of real order derivatives in linear viscoelasticity, Rheol. Acta., 26 (1988), 64-67.  doi: 10.1007/978-3-642-49337-9_11.  Google Scholar [24] M. Matignon, J. Audounet and G. Montesny, Energy decay rate for wave equations with damping of fractional order, Fourth interantional conference on Mathematical and Numerical Aspects of Wave propagation Phenomena, (1998), 638-640.   Google Scholar [25] B. Mbodje, Wave energy decay under fractional derivative controls, IMA Journal of Mathematics Control and information, 23 (2006), 237-257.  doi: 10.1093/imamci/dni056.  Google Scholar [26] B. Mbodje and G. Montesny, Boundary fractional derivative control of the wave equation, IEEE Transactions onAutomatic Control, 40 (1995), 378-382.  doi: 10.1109/9.341815.  Google Scholar [27] N. Najdi, Étude de la Stabilisation Exponentielle et Polynomiale de Certains Systèmes D'équations Couplées par des Contrôles Indirects Bornés ou non Bornés, Thèse université de Valenciennes, http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/aaac617d-95a5-4b80-8240-0dd043f20ee5 (2016). Google Scholar [28] S. Nicaise, M. A. Sammoury, D. Mercier and A. Wehbe, Indirect Stability of the wave equation with a dynamic boundary control, Mathematische Naschrichten, 291 (2018), 1114-1146.   Google Scholar [29] H. J. Park and J. R. Kang, Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation, IMA J. Appl. Math, 76 (2011), 340-350.  doi: 10.1093/imamat/hxq040.  Google Scholar [30] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Math. Sciences, 24, Springer-Verlag New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar [31] J. Prüss, On the spectrum of $C_0-$semigroup, Trans. Amer. Math. Soc, 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar [32] B. Rao and A. Wehbe, Polynomial energy decay rate and strong stability of Kirchoff plates with non-compact resolvent, J. Evol. Equ, 5 (2005), 137-152.  doi: 10.1007/s00028-005-0171-5.  Google Scholar [33] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach [Engl. Trans. from the Russian], 1993.  Google Scholar [34] M. Slemrod, Feedbacks stabilization of a linear system in a Hilbert space with an a priori bounded control, Math. Control Signals Systems, 2 (1989), 265-285.  doi: 10.1007/BF02551387.  Google Scholar

show all references

##### References:
 [1] Z. Abbas and S. Nicaise, The multidimensional wave equation with generalized acoustic boundary conditions, SIAM J. Control Optim., 53 (2015), 2582-2607.  doi: 10.1137/140971348.  Google Scholar [2] Z. Achouri, N.-E. Amroun and A. Benaissa, The Euler-Bernouilli beam equation with boundary dissipation of fractional derivative type, Mathematical Methods in the Applied Sciences, 40 (2017), 3837-3854.  doi: 10.1002/mma.4267.  Google Scholar [3] F. Alabau-Boussouira, J. Prüss and R. Zacher, Exponential and Polynomial stability of a wave equation for boundary memory damping with singular kernels, Comptes Rendues Mathématiques, 347 (2009), 277-282.  doi: 10.1016/j.crma.2009.01.005.  Google Scholar [4] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Transactions of the American Mathematical Society, 306 (1988), 837-852.  doi: 10.1090/S0002-9947-1988-0933321-3.  Google Scholar [5] R. L. Bagley and P. J. Torvik, A different approach to the analysis of viscoelasticity damped structures, The American Institue of Aeronautics and Astronautics, 21 (1983), 741-748.   Google Scholar [6] R. L. Bagley and P. J. Torvik, On the appearance of the fractional derivative in the behavior of real material, J. Appl. Mechn., 51 (1983), 294-298.   Google Scholar [7] R. L. Bagley and P. J. Torvik, A Theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheonology, 27 (1983), 201-210.  doi: 10.1122/1.549724.  Google Scholar [8] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim, 30 (1992), 1024-1065.  doi: 10.1137/0330055.  Google Scholar [9] A. Bátkai, K. J. Engel, J. Prüss and R. Shnaubelt, Polynomial stability of operator semigroup, Mth. Nashr., 279 (2006), 1425-1440.  doi: 10.1002/mana.200410429.  Google Scholar [10] C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semigroup on Banach spaces, Journal of Evolution Equations, 8 (2008), 765-780.  doi: 10.1007/s00028-008-0424-1.  Google Scholar [11] C. D. Benchimol, A note on weak stabilizability of contraction semigroups, SIAM J. Control Optimization, 16 (1978), 373-379.  doi: 10.1137/0316023.  Google Scholar [12] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann, 347 (2010), 455-478.  doi: 10.1007/s00208-009-0439-0.  Google Scholar [13] H. Brezis, Analyse Fonctionelle, Théorie et Applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar [14] M. Caputo, Vibrations of an infinite plate with a frequency independant, Q. J. Acoustic Soc. Am., 60 (1976), 634-639.   Google Scholar [15] H. Dai and H. Zhang, Exponential growth for wave equation with fractional boundary dissipation and boundary source term, Boundary Value Problems, 2014 (2014), 1-8.  doi: 10.1186/s13661-014-0138-y.  Google Scholar [16] F. L. Huang, Characteristic conditions for exponential stability of linear dynamical system in Hilbert space, Ann. Differential Equations, 1 (1985), 43-56.   Google Scholar [17] J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations, 50 (1983), 163-182.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar [18] I. Lasiecka and R. Triggiani, Uniform Stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224.  doi: 10.1007/BF01182480.  Google Scholar [19] J. L. Lions and E. Magenes, Problèmes aux limites non-homogènes et applications, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1 (1968), ⅹⅹ+372 pp.  Google Scholar [20] Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. angew. Math. Phys., 56 (2005), 630-644.  doi: 10.1007/s00033-004-3073-4.  Google Scholar [21] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman and Hall/CRC Research Notes in Mathematics, Boca Raton, FL, 1999.  Google Scholar [22] P. Loreti and B. Rao, Optimal energy decay rate for partially damped systems by spectral compensation, SIAM J. Control Optim., 45 (2006), 1612-1632.  doi: 10.1137/S0363012903437319.  Google Scholar [23] F. Mainardi and E. Bonetti, The application of real order derivatives in linear viscoelasticity, Rheol. Acta., 26 (1988), 64-67.  doi: 10.1007/978-3-642-49337-9_11.  Google Scholar [24] M. Matignon, J. Audounet and G. Montesny, Energy decay rate for wave equations with damping of fractional order, Fourth interantional conference on Mathematical and Numerical Aspects of Wave propagation Phenomena, (1998), 638-640.   Google Scholar [25] B. Mbodje, Wave energy decay under fractional derivative controls, IMA Journal of Mathematics Control and information, 23 (2006), 237-257.  doi: 10.1093/imamci/dni056.  Google Scholar [26] B. Mbodje and G. Montesny, Boundary fractional derivative control of the wave equation, IEEE Transactions onAutomatic Control, 40 (1995), 378-382.  doi: 10.1109/9.341815.  Google Scholar [27] N. Najdi, Étude de la Stabilisation Exponentielle et Polynomiale de Certains Systèmes D'équations Couplées par des Contrôles Indirects Bornés ou non Bornés, Thèse université de Valenciennes, http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/aaac617d-95a5-4b80-8240-0dd043f20ee5 (2016). Google Scholar [28] S. Nicaise, M. A. Sammoury, D. Mercier and A. Wehbe, Indirect Stability of the wave equation with a dynamic boundary control, Mathematische Naschrichten, 291 (2018), 1114-1146.   Google Scholar [29] H. J. Park and J. R. Kang, Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation, IMA J. Appl. Math, 76 (2011), 340-350.  doi: 10.1093/imamat/hxq040.  Google Scholar [30] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Math. Sciences, 24, Springer-Verlag New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar [31] J. Prüss, On the spectrum of $C_0-$semigroup, Trans. Amer. Math. Soc, 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar [32] B. Rao and A. Wehbe, Polynomial energy decay rate and strong stability of Kirchoff plates with non-compact resolvent, J. Evol. Equ, 5 (2005), 137-152.  doi: 10.1007/s00028-005-0171-5.  Google Scholar [33] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach [Engl. Trans. from the Russian], 1993.  Google Scholar [34] M. Slemrod, Feedbacks stabilization of a linear system in a Hilbert space with an a priori bounded control, Math. Control Signals Systems, 2 (1989), 265-285.  doi: 10.1007/BF02551387.  Google Scholar
Models explain the condition (GCC) holds
 [1] Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 [2] Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040 [3] Gang Tian. Bott-Chern forms and geometric stability. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 211-220. doi: 10.3934/dcds.2000.6.211 [4] Zhanyuan Hou. Geometric method for global stability of discrete population models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020063 [5] Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361 [6] Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505 [7] Mikko Salo. Stability for solutions of wave equations with $C^{1,1}$ coefficients. Inverse Problems & Imaging, 2007, 1 (3) : 537-556. doi: 10.3934/ipi.2007.1.537 [8] Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267 [9] Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813 [10] Ndolane Sene. Fractional input stability and its application to neural network. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 853-865. doi: 10.3934/dcdss.2020049 [11] Zhigang Wu, Wenjun Wang. Uniform stability of the Boltzmann equation with an external force near vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 811-823. doi: 10.3934/cpaa.2015.14.811 [12] Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141 [13] Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395 [14] Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013 [15] Cónall Kelly, Alexandra Rodkina. Constrained stability and instability of polynomial difference equations with state-dependent noise. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 913-933. doi: 10.3934/dcdsb.2009.11.913 [16] Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1 [17] Reza Kamyar, Matthew M. Peet. Polynomial optimization with applications to stability analysis and control - Alternatives to sum of squares. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2383-2417. doi: 10.3934/dcdsb.2015.20.2383 [18] Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631 [19] Yaping Wu, Niannian Yan. Stability of traveling waves for autocatalytic reaction systems with strong decay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1601-1633. doi: 10.3934/dcdsb.2017033 [20] George Avalos. Strong stability of PDE semigroups via a generator resolvent criterion. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 207-218. doi: 10.3934/dcdss.2008.1.207

2018 Impact Factor: 1.292