June  2019, 9(2): 257-276. doi: 10.3934/mcrf.2019013

A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance

1. 

Department of Mathematics, Southern University of Science and Technology, Shenzhen, China

2. 

Department of Mathematics, University of Macau, Macau, China

3. 

School of Economics and Commerce, Guangdong University of Technology, Guangzhou 510520, China

4. 

China Wealth (Asset) Management Registry & Custody Co. Ltd, Beijing 100045, China

5. 

School of Mathematics, Shandong University, Jinan 250100, China

* Corresponding author: Yi Zhuang

Received  February 2017 Revised  February 2018 Published  November 2018

In this article, we study a class of partially observed non-zero sum stochastic differential game based on forward and backward stochastic differential equations (FBSDEs). It is required that each player has his own observation equation, and the corresponding Nash equilibrium control is required to be adapted to the filtration generated by the observation process. To find the Nash equilibrium point, we establish the maximum principle as a necessary condition and derive the verification theorem as a sufficient condition. Applying the theoretical results and stochastic filtering theory, we obtain the explicit investment strategy of a partial information financial problem.

Citation: Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control & Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013
References:
[1]

T. T. K. An and B. Øksendal, Maximum principal for stochastic differential games with partial information, Journal of Optimization Theory and Applications, 139 (2008), 463-483.  doi: 10.1007/s10957-008-9398-y.  Google Scholar

[2]

J. BarasR. Elliott and M. Kohlmann, The partially observed stochastic minimum principle, SIAM J. Control Optim., 27 (1989), 1279-1292.  doi: 10.1137/0327065.  Google Scholar

[3]

A. Bensoussan, Stochastic Control of Partially Observable Systems, Cambridge University Press, U. K. 1992. doi: 10.1017/CBO9780511526503.  Google Scholar

[4]

J. CampbellG. ChackoJ. Rodriguez and L. Viceira, Strategic asset allocation in a continuous-time VAR model, Journal of Economic Dynamics and Control, 28 (2004), 2195-2214.  doi: 10.1016/j.jedc.2003.09.005.  Google Scholar

[5]

N. El Karoui and S. Hamadène, BSDEs and risk-sensitive control, zero-sum and non zero-sum game problems of stochastic functional differential equations, Stochastic Processes and their Applications, 107 (2003), 145-169.  doi: 10.1016/S0304-4149(03)00059-0.  Google Scholar

[6]

S. Hamadène, Non zero-sum linear-quadratic stochastic differential games and backward forward equations, Stochastic Analysis and Applications, 17 (1999), 117-130.  doi: 10.1080/07362999908809591.  Google Scholar

[7]

U. Haussmann, The maximum principle for optimal control of diffusions with partial information, SIAM Journal on Control and Optimization, 25 (1987), 341-361.   Google Scholar

[8]

M. Hu, Stochastic global maximum principle for optimization with recursive utilities, Probability, Uncertainty and Quantitative Risk, 2 (2017), Paper No. 1, 20 pp. doi: 10.1186/s41546-017-0014-7.  Google Scholar

[9]

J. HuangG. Wang and J. Xiong, A maximum principle for partial information backward stochastic control problems with applications, SIAM J. Control Optim., 48 (2009), 2106-2117.  doi: 10.1137/080738465.  Google Scholar

[10]

E. Hui and H. Xiao, Maximum principle for differential games of forward-backward stochastic systems with applications, J. Math. Anal. Appl., 386 (2012), 412-427.  doi: 10.1016/j.jmaa.2011.08.009.  Google Scholar

[11]

H. Liu, Robust consumption and portfolio choice for time varying investment opportunities, Annals of Finance, 6 (2010), 435-454.   Google Scholar

[12]

J. Ma and J. Yong, Forward-backward Stochastic Differential Equations and Their Applications, Springer-Verlag, New York, 1999.  Google Scholar

[13]

R. Merton, On estimating the expected return on the market: An exploratory investigation, Journal of Financial Economics, 8 (1980), 323-361.   Google Scholar

[14]

J. Nash, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences, 36 (1950), 48-49.  doi: 10.1073/pnas.36.1.48.  Google Scholar

[15]

T. NieJ. Shi and Z. Wu, Connection between MP and DPP for stochastic recursive optimal control problems: viscosity solution framework in the general case, SIAM J. Control Optim., 55 (2017), 3258-3294.  doi: 10.1137/16M1064957.  Google Scholar

[16]

B. Øksendal and A. Sulem, Forward-backward stochastic differential games and stochastic control under model uncertainty, Journal of Optimization Theory and Applications, 161 (2012), 22-55.  doi: 10.1007/s10957-012-0166-7.  Google Scholar

[17]

E. Pardoux and S. Peng, Adapted solution of backward stochastic differential equation, Syst. Control Lett., 14 (1990), 55-61.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[18]

S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27 (1993), 125-144.  doi: 10.1007/BF01195978.  Google Scholar

[19]

J. Shi and Z. Wu, The maximum principle for partially observed optimal control of fully coupled forward-backward stochastic system, J. Optim. Theory Appl., 145 (2010), 543-578.  doi: 10.1007/s10957-010-9696-z.  Google Scholar

[20]

J. Shi and Z. Wu, Maximum principle for forward-backward stochastic control system with random jumps and applications to finance, Journal of Systems Science & Complexity, 23 (2010), 219-231.  doi: 10.1007/s11424-010-7224-8.  Google Scholar

[21]

M. Tang and Q. Meng, Stochastic differential games of fully coupled forward-backward stochastic systems under partial information, in Proceddings of 29th Chinese Control Conference, Beijing, China, (2010), 1150-1155. Google Scholar

[22]

J. Von Neumann and O. Morgenstern, The Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1944. Google Scholar

[23]

G. Wang and Z. Wu, Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems, J. Math. Anal. Appl., 342 (2008), 1280-1296.  doi: 10.1016/j.jmaa.2007.12.072.  Google Scholar

[24]

G. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information, IEEE Trans. Automat. Control, 54 (2009), 1230-1242.  doi: 10.1109/TAC.2009.2019794.  Google Scholar

[25]

G. WangZ. Wu and J. Xiong, Maximum principles for forward-backward stochastic control systems with correlated state and obervation noises, SIAM J. Control Optim., 51 (2013), 491-524.  doi: 10.1137/110846920.  Google Scholar

[26]

G. Wang and Z. Yu, A Pontryagin's maximum principle for non-zero sum differential games of BSDEs with applications, IEEE Transactions on Automatic Control, 55 (2010), 1742-1747.  doi: 10.1109/TAC.2010.2048052.  Google Scholar

[27]

G. Wang and Z. Yu, A partial information non-zero sum differential game of backward stochastic differential equations with applications, Automatica, 48 (2012), 342-352.  doi: 10.1016/j.automatica.2011.11.010.  Google Scholar

[28]

Z. Wu, Forward-backward stochastic differential equations, linear quadratic stochastic optimal control and nonzero sum differential games, Journal of Systems Science and Complexity, 18 (2005), 179-192.   Google Scholar

[29]

Z. Wu, A maximum principle for partially observed optimal control of forward-backward stochastic control systems, Sci. China Ser. F Inf. Sci., 53 (2010), 2205-2214.  doi: 10.1007/s11432-010-4094-6.  Google Scholar

[30]

Z. Wu, A general maximum principle for optimal control problems of forward-backward stochastic control systems, Automatica, 49 (2013), 1473-1480.  doi: 10.1016/j.automatica.2013.02.005.  Google Scholar

[31]

J. Xiong, An Introduction to Stochastic Filtering Theory, Oxford University Press, Oxford, 2008.  Google Scholar

[32]

J. Xiong and X. Zhou, Mean-variance portfolio selection under partial information, SIAM Journal on Control and Optimization, 46 (2007), 156-175.  doi: 10.1137/050641132.  Google Scholar

[33]

W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system, J. Aust. Math. Soc. B, 37 (1995), 172-185.  doi: 10.1017/S0334270000007645.  Google Scholar

[34]

J. Yong, Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions, SIAM Journal on Control and Optimization, 48 (2010), 4119-4156.  doi: 10.1137/090763287.  Google Scholar

[35]

J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[36]

Z. Yu and S. Ji, Linear-quadratic non-zero sum differential game of backward stochastic differential equations, in Proceddings 27th Chinese Control Conference, Kunming, Yunnan, (2008), 562-566. Google Scholar

show all references

References:
[1]

T. T. K. An and B. Øksendal, Maximum principal for stochastic differential games with partial information, Journal of Optimization Theory and Applications, 139 (2008), 463-483.  doi: 10.1007/s10957-008-9398-y.  Google Scholar

[2]

J. BarasR. Elliott and M. Kohlmann, The partially observed stochastic minimum principle, SIAM J. Control Optim., 27 (1989), 1279-1292.  doi: 10.1137/0327065.  Google Scholar

[3]

A. Bensoussan, Stochastic Control of Partially Observable Systems, Cambridge University Press, U. K. 1992. doi: 10.1017/CBO9780511526503.  Google Scholar

[4]

J. CampbellG. ChackoJ. Rodriguez and L. Viceira, Strategic asset allocation in a continuous-time VAR model, Journal of Economic Dynamics and Control, 28 (2004), 2195-2214.  doi: 10.1016/j.jedc.2003.09.005.  Google Scholar

[5]

N. El Karoui and S. Hamadène, BSDEs and risk-sensitive control, zero-sum and non zero-sum game problems of stochastic functional differential equations, Stochastic Processes and their Applications, 107 (2003), 145-169.  doi: 10.1016/S0304-4149(03)00059-0.  Google Scholar

[6]

S. Hamadène, Non zero-sum linear-quadratic stochastic differential games and backward forward equations, Stochastic Analysis and Applications, 17 (1999), 117-130.  doi: 10.1080/07362999908809591.  Google Scholar

[7]

U. Haussmann, The maximum principle for optimal control of diffusions with partial information, SIAM Journal on Control and Optimization, 25 (1987), 341-361.   Google Scholar

[8]

M. Hu, Stochastic global maximum principle for optimization with recursive utilities, Probability, Uncertainty and Quantitative Risk, 2 (2017), Paper No. 1, 20 pp. doi: 10.1186/s41546-017-0014-7.  Google Scholar

[9]

J. HuangG. Wang and J. Xiong, A maximum principle for partial information backward stochastic control problems with applications, SIAM J. Control Optim., 48 (2009), 2106-2117.  doi: 10.1137/080738465.  Google Scholar

[10]

E. Hui and H. Xiao, Maximum principle for differential games of forward-backward stochastic systems with applications, J. Math. Anal. Appl., 386 (2012), 412-427.  doi: 10.1016/j.jmaa.2011.08.009.  Google Scholar

[11]

H. Liu, Robust consumption and portfolio choice for time varying investment opportunities, Annals of Finance, 6 (2010), 435-454.   Google Scholar

[12]

J. Ma and J. Yong, Forward-backward Stochastic Differential Equations and Their Applications, Springer-Verlag, New York, 1999.  Google Scholar

[13]

R. Merton, On estimating the expected return on the market: An exploratory investigation, Journal of Financial Economics, 8 (1980), 323-361.   Google Scholar

[14]

J. Nash, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences, 36 (1950), 48-49.  doi: 10.1073/pnas.36.1.48.  Google Scholar

[15]

T. NieJ. Shi and Z. Wu, Connection between MP and DPP for stochastic recursive optimal control problems: viscosity solution framework in the general case, SIAM J. Control Optim., 55 (2017), 3258-3294.  doi: 10.1137/16M1064957.  Google Scholar

[16]

B. Øksendal and A. Sulem, Forward-backward stochastic differential games and stochastic control under model uncertainty, Journal of Optimization Theory and Applications, 161 (2012), 22-55.  doi: 10.1007/s10957-012-0166-7.  Google Scholar

[17]

E. Pardoux and S. Peng, Adapted solution of backward stochastic differential equation, Syst. Control Lett., 14 (1990), 55-61.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[18]

S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27 (1993), 125-144.  doi: 10.1007/BF01195978.  Google Scholar

[19]

J. Shi and Z. Wu, The maximum principle for partially observed optimal control of fully coupled forward-backward stochastic system, J. Optim. Theory Appl., 145 (2010), 543-578.  doi: 10.1007/s10957-010-9696-z.  Google Scholar

[20]

J. Shi and Z. Wu, Maximum principle for forward-backward stochastic control system with random jumps and applications to finance, Journal of Systems Science & Complexity, 23 (2010), 219-231.  doi: 10.1007/s11424-010-7224-8.  Google Scholar

[21]

M. Tang and Q. Meng, Stochastic differential games of fully coupled forward-backward stochastic systems under partial information, in Proceddings of 29th Chinese Control Conference, Beijing, China, (2010), 1150-1155. Google Scholar

[22]

J. Von Neumann and O. Morgenstern, The Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1944. Google Scholar

[23]

G. Wang and Z. Wu, Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems, J. Math. Anal. Appl., 342 (2008), 1280-1296.  doi: 10.1016/j.jmaa.2007.12.072.  Google Scholar

[24]

G. Wang and Z. Wu, The maximum principles for stochastic recursive optimal control problems under partial information, IEEE Trans. Automat. Control, 54 (2009), 1230-1242.  doi: 10.1109/TAC.2009.2019794.  Google Scholar

[25]

G. WangZ. Wu and J. Xiong, Maximum principles for forward-backward stochastic control systems with correlated state and obervation noises, SIAM J. Control Optim., 51 (2013), 491-524.  doi: 10.1137/110846920.  Google Scholar

[26]

G. Wang and Z. Yu, A Pontryagin's maximum principle for non-zero sum differential games of BSDEs with applications, IEEE Transactions on Automatic Control, 55 (2010), 1742-1747.  doi: 10.1109/TAC.2010.2048052.  Google Scholar

[27]

G. Wang and Z. Yu, A partial information non-zero sum differential game of backward stochastic differential equations with applications, Automatica, 48 (2012), 342-352.  doi: 10.1016/j.automatica.2011.11.010.  Google Scholar

[28]

Z. Wu, Forward-backward stochastic differential equations, linear quadratic stochastic optimal control and nonzero sum differential games, Journal of Systems Science and Complexity, 18 (2005), 179-192.   Google Scholar

[29]

Z. Wu, A maximum principle for partially observed optimal control of forward-backward stochastic control systems, Sci. China Ser. F Inf. Sci., 53 (2010), 2205-2214.  doi: 10.1007/s11432-010-4094-6.  Google Scholar

[30]

Z. Wu, A general maximum principle for optimal control problems of forward-backward stochastic control systems, Automatica, 49 (2013), 1473-1480.  doi: 10.1016/j.automatica.2013.02.005.  Google Scholar

[31]

J. Xiong, An Introduction to Stochastic Filtering Theory, Oxford University Press, Oxford, 2008.  Google Scholar

[32]

J. Xiong and X. Zhou, Mean-variance portfolio selection under partial information, SIAM Journal on Control and Optimization, 46 (2007), 156-175.  doi: 10.1137/050641132.  Google Scholar

[33]

W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system, J. Aust. Math. Soc. B, 37 (1995), 172-185.  doi: 10.1017/S0334270000007645.  Google Scholar

[34]

J. Yong, Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions, SIAM Journal on Control and Optimization, 48 (2010), 4119-4156.  doi: 10.1137/090763287.  Google Scholar

[35]

J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[36]

Z. Yu and S. Ji, Linear-quadratic non-zero sum differential game of backward stochastic differential equations, in Proceddings 27th Chinese Control Conference, Kunming, Yunnan, (2008), 562-566. Google Scholar

[1]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[2]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[3]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[6]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[7]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[8]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[9]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[10]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[11]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[12]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[13]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[14]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[17]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[18]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[19]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[20]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

2019 Impact Factor: 0.857

Metrics

  • PDF downloads (193)
  • HTML views (774)
  • Cited by (3)

Other articles
by authors

[Back to Top]