doi: 10.3934/mcrf.2019027

Quantitative approximation properties for the fractional heat equation

1. 

Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22, 04105 Leipzig, Germany

2. 

Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland

* Corresponding author: Angkana Rüland

Received  February 2018 Revised  February 2018 Published  April 2019

In this article we analyse quantitative approximation properties of a certain class of nonlocal equations: Viewing the fractional heat equation as a model problem, which involves both local and nonlocal pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain qualitative approximation results from [9]. Using propagation of smallness arguments, we then provide bounds on the cost of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss generalizations of these results to a larger class of operators involving both local and nonlocal contributions.

Citation: Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2019027
References:
[1]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004, 47pp. doi: 10.1088/0266-5611/25/12/123004.

[2]

U. Biccari and V. Hernández-Santamarıa, Controllability of a one-dimensional fractional heat equation: Theoretical and numerical aspects, IMA Journal of Mathematical Control and Information.

[3]

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, Recent Advances in PDEs: Analysis, Numerics and Control. Springer, Cham, 2018,233-249.

[4]

F. E. Browder, Approximation by solutions of partial differential equations, American Journal of Mathematics, 84 (1962), 134-160. doi: 10.2307/2372809.

[5]

F. E. Browder, Functional analysis and partial differential equations. Ⅱ, Mathematische Annalen, 145 (1961/1962), 81-226. doi: 10.1007/BF01342796.

[6]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 31, Elsevier, 2014, 23–53. doi: 10.1016/j.anihpc.2013.02.001.

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[8]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 33, Elsevier, 2016, 767–807. doi: 10.1016/j.anihpc.2015.01.004.

[9]

S. Dipierro, O. Savin and E. Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations, The Journal of Geometric Analysis, 2018, 1-28.

[10]

S. DipierroO. Savin and E. Valdinoci, All functions are locally $s$-harmonic up to a small error, J. Eur. Math. Soc. (JEMS), 19 (2017), 957-966. doi: 10.4171/JEMS/684.

[11]

T. Duyckaerts and L. Miller, Resolvent conditions for the control of parabolic equations, Journal of Functional Analysis, 263 (2012), 3641-3673. doi: 10.1016/j.jfa.2012.09.003.

[12]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems, vol. 28 of Classics in Applied Mathematics, English edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. doi: 10.1137/1.9781611971088.

[13]

C. FabreJ.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 125 (1995), 31-61. doi: 10.1017/S0308210500030742.

[14]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators, Communications in Partial Differential Equations, 38 (2013), 1539-1573. doi: 10.1080/03605302.2013.808211.

[15]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Advances in Differential Equations, 5 (2000), 465-514.

[16]

T. Ghosh, Y.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Comm. Partial Differential Equations, 42 (2017), 1923–1961, arXiv: 1708.00654. doi: 10.1080/03605302.2017.1390681.

[17]

T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv preprint, arXiv: 1609.09248, to appear in Analysis and PDE.

[18]

G. Grubb, Regularity in $L^p$ Sobolev spaces of solutions to fractional heat equations, Journal of Functional Analysis, 274 (2018), 2634-2660. doi: 10.1016/j.jfa.2017.12.011.

[19]

V. Isakov, Inverse Source Problems, 34, American Mathematical Soc., 1990. doi: 10.1090/surv/034.

[20]

M. Kassmann, A new formulation of Harnack's inequality for nonlocal operators, Comptes Rendus Mathematique, 349 (2011), 637-640. doi: 10.1016/j.crma.2011.04.014.

[21]

M. Kassmann and R. W. Schwab, Regularity results for nonlocal parabolic equations, Riv. Math. Univ. Parma (N.S.), 5 (2014), 183-212.

[22]

H. Koch, A. Rüland and W. Shi, Higher regularity for the fractional thin obstacle problem, Adv. Differential Equations, 22 (2017), 793–866, arXiv: 1605.06662.

[23]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fractional Calculus and Applied Analysis, 20 (2017), 7-51. doi: 10.1515/fca-2017-0002.

[24]

P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Communications on Pure and Applied Mathematics, 9 (1956), 747-766. doi: 10.1002/cpa.3160090407.

[25]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Communications in Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[26]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete & Continuous Dynamical Systems-A, 35 (2015), 6031-6068. doi: 10.3934/dcds.2015.35.6031.

[27]

J.-L. Lions, Remarks on approximate controllability, Journal dAnalyse Mathématique, 59 (1992), 103–116. doi: 10.1007/BF02790220.

[28]

S. Łojasiewicz, Sur le problème de la division, Studia Math., 18 (1959), 87-136. doi: 10.4064/sm-18-1-87-136.

[29]

S. Micu and E. Zuazua, On the controllability of a fractional order parabolic equation, SIAM journal on Control and Optimization, 44 (2006), 1950-1972. doi: 10.1137/S036301290444263X.

[30]

L. Miller, On the controllability of anomalous diffusions generated by the fractional Laplacian, Mathematics of Control, Signals and Systems, 18 (2006), 260-271. doi: 10.1007/s00498-006-0003-3.

[31]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete and Continuous Dynamical Systems-Series B, 14 (2010), 1465-1485. doi: 10.3934/dcdsb.2010.14.1465.

[32]

K.-D. Phung, Note on the cost of the approximate controllability for the heat equation with potential, Journal of Mathematical Analysis and Applications, 295 (2004), 527-538. doi: 10.1016/j.jmaa.2004.03.059.

[33]

L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques, Asymptotic Analysis, 10 (1995), 95-115.

[34]

X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat, 60 (2016), 3-26.

[35]

A. Rüland, Unique continuation for fractional Schrödinger equations with rough potentials, Communications in Partial Differential Equations, 40 (2015), 77-114. doi: 10.1080/03605302.2014.905594.

[36]

A. Rüland, Quantitative invertibility and approximation for the truncated Hilbert and Riesz transforms, arXiv preprint, arXiv: 1708.04285, to appear in Revista Matemática Iberoamericana.

[37]

A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability, arXiv Preprint, August.

[38]

A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21pp. doi: 10.1088/1361-6420/aaac5a.

[39]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Communications in Partial Differential Equations, 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.

[40]

H. Yu, Unique continuation for fractional orders of elliptic equations, Ann. PDE, 3 (2017), Art. 16, 21 pp, arXiv: 1609.01376. doi: 10.1007/s40818-017-0033-9.

[41]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, Handbook of Differential Equations: Evolutionary Equations, 3 (2007), 527-621. doi: 10.1016/S1874-5717(07)80010-7.

show all references

References:
[1]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004, 47pp. doi: 10.1088/0266-5611/25/12/123004.

[2]

U. Biccari and V. Hernández-Santamarıa, Controllability of a one-dimensional fractional heat equation: Theoretical and numerical aspects, IMA Journal of Mathematical Control and Information.

[3]

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, Recent Advances in PDEs: Analysis, Numerics and Control. Springer, Cham, 2018,233-249.

[4]

F. E. Browder, Approximation by solutions of partial differential equations, American Journal of Mathematics, 84 (1962), 134-160. doi: 10.2307/2372809.

[5]

F. E. Browder, Functional analysis and partial differential equations. Ⅱ, Mathematische Annalen, 145 (1961/1962), 81-226. doi: 10.1007/BF01342796.

[6]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 31, Elsevier, 2014, 23–53. doi: 10.1016/j.anihpc.2013.02.001.

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[8]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 33, Elsevier, 2016, 767–807. doi: 10.1016/j.anihpc.2015.01.004.

[9]

S. Dipierro, O. Savin and E. Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations, The Journal of Geometric Analysis, 2018, 1-28.

[10]

S. DipierroO. Savin and E. Valdinoci, All functions are locally $s$-harmonic up to a small error, J. Eur. Math. Soc. (JEMS), 19 (2017), 957-966. doi: 10.4171/JEMS/684.

[11]

T. Duyckaerts and L. Miller, Resolvent conditions for the control of parabolic equations, Journal of Functional Analysis, 263 (2012), 3641-3673. doi: 10.1016/j.jfa.2012.09.003.

[12]

I. Ekeland and R. Témam, Convex Analysis and Variational Problems, vol. 28 of Classics in Applied Mathematics, English edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. doi: 10.1137/1.9781611971088.

[13]

C. FabreJ.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 125 (1995), 31-61. doi: 10.1017/S0308210500030742.

[14]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators, Communications in Partial Differential Equations, 38 (2013), 1539-1573. doi: 10.1080/03605302.2013.808211.

[15]

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Advances in Differential Equations, 5 (2000), 465-514.

[16]

T. Ghosh, Y.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Comm. Partial Differential Equations, 42 (2017), 1923–1961, arXiv: 1708.00654. doi: 10.1080/03605302.2017.1390681.

[17]

T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv preprint, arXiv: 1609.09248, to appear in Analysis and PDE.

[18]

G. Grubb, Regularity in $L^p$ Sobolev spaces of solutions to fractional heat equations, Journal of Functional Analysis, 274 (2018), 2634-2660. doi: 10.1016/j.jfa.2017.12.011.

[19]

V. Isakov, Inverse Source Problems, 34, American Mathematical Soc., 1990. doi: 10.1090/surv/034.

[20]

M. Kassmann, A new formulation of Harnack's inequality for nonlocal operators, Comptes Rendus Mathematique, 349 (2011), 637-640. doi: 10.1016/j.crma.2011.04.014.

[21]

M. Kassmann and R. W. Schwab, Regularity results for nonlocal parabolic equations, Riv. Math. Univ. Parma (N.S.), 5 (2014), 183-212.

[22]

H. Koch, A. Rüland and W. Shi, Higher regularity for the fractional thin obstacle problem, Adv. Differential Equations, 22 (2017), 793–866, arXiv: 1605.06662.

[23]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fractional Calculus and Applied Analysis, 20 (2017), 7-51. doi: 10.1515/fca-2017-0002.

[24]

P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Communications on Pure and Applied Mathematics, 9 (1956), 747-766. doi: 10.1002/cpa.3160090407.

[25]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Communications in Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[26]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete & Continuous Dynamical Systems-A, 35 (2015), 6031-6068. doi: 10.3934/dcds.2015.35.6031.

[27]

J.-L. Lions, Remarks on approximate controllability, Journal dAnalyse Mathématique, 59 (1992), 103–116. doi: 10.1007/BF02790220.

[28]

S. Łojasiewicz, Sur le problème de la division, Studia Math., 18 (1959), 87-136. doi: 10.4064/sm-18-1-87-136.

[29]

S. Micu and E. Zuazua, On the controllability of a fractional order parabolic equation, SIAM journal on Control and Optimization, 44 (2006), 1950-1972. doi: 10.1137/S036301290444263X.

[30]

L. Miller, On the controllability of anomalous diffusions generated by the fractional Laplacian, Mathematics of Control, Signals and Systems, 18 (2006), 260-271. doi: 10.1007/s00498-006-0003-3.

[31]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete and Continuous Dynamical Systems-Series B, 14 (2010), 1465-1485. doi: 10.3934/dcdsb.2010.14.1465.

[32]

K.-D. Phung, Note on the cost of the approximate controllability for the heat equation with potential, Journal of Mathematical Analysis and Applications, 295 (2004), 527-538. doi: 10.1016/j.jmaa.2004.03.059.

[33]

L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques, Asymptotic Analysis, 10 (1995), 95-115.

[34]

X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat, 60 (2016), 3-26.

[35]

A. Rüland, Unique continuation for fractional Schrödinger equations with rough potentials, Communications in Partial Differential Equations, 40 (2015), 77-114. doi: 10.1080/03605302.2014.905594.

[36]

A. Rüland, Quantitative invertibility and approximation for the truncated Hilbert and Riesz transforms, arXiv preprint, arXiv: 1708.04285, to appear in Revista Matemática Iberoamericana.

[37]

A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability, arXiv Preprint, August.

[38]

A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21pp. doi: 10.1088/1361-6420/aaac5a.

[39]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Communications in Partial Differential Equations, 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.

[40]

H. Yu, Unique continuation for fractional orders of elliptic equations, Ann. PDE, 3 (2017), Art. 16, 21 pp, arXiv: 1609.01376. doi: 10.1007/s40818-017-0033-9.

[41]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, Handbook of Differential Equations: Evolutionary Equations, 3 (2007), 527-621. doi: 10.1016/S1874-5717(07)80010-7.

Figure 1.  The annulus from the proof of Corollary 1. The shaded area corresponds to the annulus $ A_{R_1(\tilde{k}_1),R_2(\tilde{k}_1)}(\tilde{k}_1) $ with $ \tilde{k}_1 $ chosen to be $ i|k_0| $. The bold red line (see the online version for a colour figures) indicates the discontinuity line of the function $ e^{s_1 \log(k_1^2 + |k_0|^2)} $
[1]

Kim Knudsen, Jennifer L. Mueller. The born approximation and Calderón's method for reconstruction of conductivities in 3-D. Conference Publications, 2011, 2011 (Special) : 844-853. doi: 10.3934/proc.2011.2011.844

[2]

Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems & Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026

[3]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[4]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[5]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[6]

Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems & Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939

[7]

Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015

[8]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[9]

G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279

[10]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[11]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[12]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[13]

Yernat M. Assylbekov. Reconstruction in the partial data Calderón problem on admissible manifolds. Inverse Problems & Imaging, 2017, 11 (3) : 455-476. doi: 10.3934/ipi.2017021

[14]

Matteo Santacesaria. Note on Calderón's inverse problem for measurable conductivities. Inverse Problems & Imaging, 2019, 13 (1) : 149-157. doi: 10.3934/ipi.2019008

[15]

Matthias Täufer, Martin Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1719-1730. doi: 10.3934/cpaa.2017083

[16]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[17]

Marius Ionescu, Luke G. Rogers. Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-Zygmund operators. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2155-2175. doi: 10.3934/cpaa.2014.13.2155

[18]

Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control & Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014

[19]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[20]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 609-627. doi: 10.3934/dcdss.2020033

2017 Impact Factor: 0.631

Article outline

Figures and Tables

[Back to Top]