doi: 10.3934/mcrf.2019031

Minimal time of null controllability of two parabolic equations

Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France

* Corresponding author

Received  May 2018 Revised  December 2018 Published  April 2019

We consider a one-dimensional 2 × 2 parabolic equations, simultaneously controllable by a localized function in their source term. We also consider a simultaneous boundary control. In each case, we prove the existence of minimal time T0(q) of null controllability, that is to say, the corresponding problem is null controllable at any time T > T0(q) and not null controllable for T < T0(q). We also prove that one can expect any minimal time associated to the boundary control problem.

Citation: Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2019031
References:
[1]

D. AllonsiusF. Boyer and M. Morancey, Spectral analysis of discrete elliptic operators and applications in control theory, Numerische Mathematik, 140 (2018), 857-911. doi: 10.1007/s00211-018-0983-1. Google Scholar

[2]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems, J. Evol. Equ, 9 (2009), 267-291. doi: 10.1007/s00028-009-0008-8. Google Scholar

[3]

F. Ammar KhodjaA. BenabdallahC. Dupaix and I. Kostin, Null-controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var, 11 (2005), 426-448. doi: 10.1051/cocv:2005013. Google Scholar

[4]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences, J. Funct. Anal, 267 (2014), 2077-2151. doi: 10.1016/j.jfa.2014.07.024. Google Scholar

[5]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence, J. Math. Anal. Appl, 444 (2016), 1071-1113. doi: 10.1016/j.jmaa.2016.06.058. Google Scholar

[6]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa., Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267. Google Scholar

[7]

V. Bernstein, Leçcons sur les Progrès Réscents de la Théorie des Séries de Dirichlet, Gauthier-Villars, Paris, 1933.Google Scholar

[8]

J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136. American Mathematical Society, Providence, RI, 2007. Google Scholar

[9]

H. O. Fattorini and D. L. Russell., Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal, 43 (1971), 272-292. doi: 10.1007/BF00250466. Google Scholar

[10]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math, 32 (1974/75), 45-69. doi: 10.1090/qam/510972. Google Scholar

[11]

E. Fernández-CaraM. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal, 259 (2010), 1720-1758. doi: 10.1016/j.jfa.2010.06.003. Google Scholar

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, , Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. Google Scholar

[13]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math, 67 (2010), 91-113. doi: 10.4171/PM/1859. Google Scholar

[14]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, volume 120 of Applied Mathematical Sciences, second edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-8474-6. Google Scholar

[15]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097. Google Scholar

[16]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, volume 130 of Pure and Applied Mathematics, Academic Press, Inc., Boston, MA, 1987. Google Scholar

[17]

J. R. Shackell, Overconvergence of Dirichlet series with complex exponents, J. Analyse Math, 22 (1969), 135-170. doi: 10.1007/BF02786787. Google Scholar

[18]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9. Google Scholar

[19]

J. Zabczyk, Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. Google Scholar

show all references

References:
[1]

D. AllonsiusF. Boyer and M. Morancey, Spectral analysis of discrete elliptic operators and applications in control theory, Numerische Mathematik, 140 (2018), 857-911. doi: 10.1007/s00211-018-0983-1. Google Scholar

[2]

F. Ammar-KhodjaA. BenabdallahC. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems, J. Evol. Equ, 9 (2009), 267-291. doi: 10.1007/s00028-009-0008-8. Google Scholar

[3]

F. Ammar KhodjaA. BenabdallahC. Dupaix and I. Kostin, Null-controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var, 11 (2005), 426-448. doi: 10.1051/cocv:2005013. Google Scholar

[4]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences, J. Funct. Anal, 267 (2014), 2077-2151. doi: 10.1016/j.jfa.2014.07.024. Google Scholar

[5]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence, J. Math. Anal. Appl, 444 (2016), 1071-1113. doi: 10.1016/j.jmaa.2016.06.058. Google Scholar

[6]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa., Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267. Google Scholar

[7]

V. Bernstein, Leçcons sur les Progrès Réscents de la Théorie des Séries de Dirichlet, Gauthier-Villars, Paris, 1933.Google Scholar

[8]

J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136. American Mathematical Society, Providence, RI, 2007. Google Scholar

[9]

H. O. Fattorini and D. L. Russell., Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal, 43 (1971), 272-292. doi: 10.1007/BF00250466. Google Scholar

[10]

H. O. Fattorini and D. L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math, 32 (1974/75), 45-69. doi: 10.1090/qam/510972. Google Scholar

[11]

E. Fernández-CaraM. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations, J. Funct. Anal, 259 (2010), 1720-1758. doi: 10.1016/j.jfa.2010.06.003. Google Scholar

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, , Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. Google Scholar

[13]

M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math, 67 (2010), 91-113. doi: 10.4171/PM/1859. Google Scholar

[14]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, volume 120 of Applied Mathematical Sciences, second edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-8474-6. Google Scholar

[15]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097. Google Scholar

[16]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, volume 130 of Pure and Applied Mathematics, Academic Press, Inc., Boston, MA, 1987. Google Scholar

[17]

J. R. Shackell, Overconvergence of Dirichlet series with complex exponents, J. Analyse Math, 22 (1969), 135-170. doi: 10.1007/BF02786787. Google Scholar

[18]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9. Google Scholar

[19]

J. Zabczyk, Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. Google Scholar

[1]

Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems & Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004

[2]

Russell Johnson, Luca Zampogni. On the inverse Sturm-Liouville problem. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 405-428. doi: 10.3934/dcds.2007.18.405

[3]

N. A. Chernyavskaya, L. A. Shuster. Spaces admissible for the Sturm-Liouville equation. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1023-1052. doi: 10.3934/cpaa.2018050

[4]

Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019066

[5]

Guglielmo Feltrin. Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1083-1102. doi: 10.3934/cpaa.2017052

[6]

Elimhan N. Mahmudov. Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2018145

[7]

Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic & Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1

[8]

Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139

[9]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[10]

Filippo Gazzola. On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3583-3597. doi: 10.3934/dcds.2013.33.3583

[11]

Todd Young. A result in global bifurcation theory using the Conley index. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387

[12]

Matthias Gerdts, Stefan Horn, Sven-Joachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial & Management Optimization, 2017, 13 (1) : 47-62. doi: 10.3934/jimo.2016003

[13]

Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025

[14]

Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 647-670. doi: 10.3934/dcds.2011.29.647

[15]

Stephen Campbell, Peter Kunkel. Solving higher index DAE optimal control problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 447-472. doi: 10.3934/naco.2016020

[16]

Pierre Lissy. Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory. Mathematical Control & Related Fields, 2017, 7 (1) : 21-40. doi: 10.3934/mcrf.2017002

[17]

Rúben Sousa, Semyon Yakubovich. The spectral expansion approach to index transforms and connections with the theory of diffusion processes. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2351-2378. doi: 10.3934/cpaa.2018112

[18]

Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629

[19]

Kung-Ching Chang, Zhi-Qiang Wang, Tan Zhang. On a new index theory and non semi-trivial solutions for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 809-826. doi: 10.3934/dcds.2010.28.809

[20]

Ketty A. De Rezende, Mariana G. Villapouca. Discrete conley index theory for zero dimensional basic sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1359-1387. doi: 10.3934/dcds.2017056

2018 Impact Factor: 1.292

Article outline

[Back to Top]