We study an optimal control problem for a quasi-linear elliptic equation with anisotropic p-Laplace operator in its principal part and $ L^1 $-control in coefficient of the low-order term. We assume that the matrix of anisotropy belongs to BMO-space. Since we cannot expect to have a solution of the state equation in the classical Sobolev space, we introduce a suitable functional class in which we look for solutions and prove existence of optimal pairs using an approximation procedure and compactness arguments in variable spaces.
Citation: |
[1] | D. J. Bergman and D. Stroud, Physical properties of macroscopically inhomogeneous media, North–HollaSolid State Physics, 46 (1992), 147-269. |
[2] | M. Briane and J. Casado-Diaz, Uniform convergence of sequences of solutions of two-dimensional linear elliptic equations with unbounded coefficients, J. of Diff. Equa., 245 (2008), 2038-2054. doi: 10.1016/j.jde.2008.07.027. |
[3] | D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, , Birkhäuser, 2005. |
[4] | P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, Nonlinear Diff. Equa. Appl., 7 (2000), 187-199. |
[5] | E. Casas, R. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with $L^1$-cost functional, SIAM Journal on Optimization, 22 (2012), 795-820. doi: 10.1137/110834366. |
[6] | V. Chiadò Piat and F. Serra Cassano, Some remarks about the density of smooth functions in weighted Sobolev spaces, J. Convex Analysis, 1 (1994), 135-142. |
[7] | M. Chicco and M. Venturino, Dirichlet problem for a divergence form elliptic equation with unbounded coefficients in an unbounded domain, Annali di Matematica Pura ed Applicata, 178 (2000), 325-338. doi: 10.1007/BF02505902. |
[8] | C. D'Apice, U. De Maio, P. I. Kogut and R. Manzo, Solvability of an optimal control problem in coefficients for ill-posed elliptic boundary value problems, Electronic Journal of Differential Equations, 2014 (2014), 1-23. |
[9] | C. D'Apice, U. De Maio and O. P. Kogut, Optimal control problems in coefficients for degenerate equations of monotone type: shape stability and attainability problems, SIAM J. Control Optim., 50 (2012), 1174-1199. doi: 10.1137/100815761. |
[10] | C. D'Apice, U. De Maio and O. P. Kogut, On shape stability of Dirichlet optimal control problems in coefficients for nonlinear elliptic equations, Adv. Differential Equations, 15 (2010), 689-720. |
[11] | P. Di Gironimo and G. Zecca, Sobolev-Zygmund solutions for nonlinear elliptic equations with growth coefficients in BMO, Submitted. |
[12] | P. Drabek, A. Kufner and F. Nicolosi, Non Linear Elliptic Equations, Singular and Degenerate Cases, (Walter de Cruyter, 1997). |
[13] | T. Durante, O. P. Kupenko and R. Manzo, On attainability of optimal controls in coefficients for system of Hammerstein type with anisotropic p-Laplacian, Ricerche di Matematica, 66 (2017), 259-292. doi: 10.1007/s11587-016-0300-1. |
[14] | F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426. doi: 10.1002/cpa.3160140317. |
[15] | T. Horsin and P. I. Kogut, Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I.Existence result, Mathematical Control and Related Fields, 5 (2015), 73-96. doi: 10.3934/mcrf.2015.5.73. |
[16] | T. Horsin and P. I. Kogut, On unbounded optimal controls in coefficients for ill-posed elliptic Dirichlet boundary value problems, Asymptotic Analysis, 98 (2016), 155-188. doi: 10.3233/ASY-161365. |
[17] | F. W. Gehring, The $L^p$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130 (1973), 265-277. doi: 10.1007/BF02392268. |
[18] | P. I. Kogut, On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients, Discrete and Continuous Dynamical Systems - Series A, 34 (2014), 2105-2133. doi: 10.3934/dcds.2014.34.2105. |
[19] | P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, , Series: Systems and Control, Birkhäuser Verlag, 2011. doi: 10.1007/978-0-8176-8149-4. |
[20] | P. I. Kogut and G. Leugering, Matrix-valued $L^1$-optimal control in the coefficients of linear elliptic problems, Journal for Analysis and its Applications (ZAA), 32 (2013), 433-456. doi: 10.4171/ZAA/1493. |
[21] | O. P. Kupenko and R. Manzo, Approximation of an optimal control problem in coefficient for variational inequality with anisotropic p-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), 1-18. doi: 10.1007/s00030-016-0387-9. |
[22] | O. P. Kupenko and R. Manzo, On optimal controls in coefficients for ill-posed non-linear elliptic dirichlet bounday value problems, Discrete and Continuous Dynamical Systems Journal, series B, (2018). |
[23] | G. I. Laptev, Monotonicity conditions for a class of quasilinear differential operators depending on parameters, Math. Notes, 96 (2014), 379-390. |
[24] | S. Leftkimmiatis, A. Bourquard and M. Unser, Hessian-based norm regularization for image restoration with biomedical applications, IEEE Trans. on Image Process., 21 (2012), 983-995. doi: 10.1109/TIP.2011.2168232. |
[25] | O. Levy and R. V. Kohn, Duality relations for non-ohmic composites, with applications to behavior near percolation, J. Statist. Phys., 90 (1998), 159-189. doi: 10.1023/A:1023251701546. |
[26] | V. G. Maz'ya, On cetrtain integral inequalities for functions of many variables, J. Soviet Math., 1 (1973), 205-234. |
[27] | S. E. Pastukhova, Degenerate equations of monotone type: Lavrent'ev phenomenon and attainability problems, Sbornik: Mathematics, 198 (2007), 1465-1494. doi: 10.1070/SM2007v198n10ABEH003892. |
[28] | I. Peral, Multiplicity of Solutions for the $P$-Laplacian, , Second School of Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997. |
[29] | F. Punzo and A. Tesei, Uniqueness of solutions to degenerate elliptic problems with unbounded coefficients, Ann. I.H. Poincaré, 26 (2009), 2001-2024. doi: 10.1016/j.anihpc.2009.04.005. |
[30] | T. Radice, Regularity result for nondivergence elliptic equations with unbounded coefficients, Diff. Integral Equa., 23 (2010), 989-1000. |
[31] | T. Radice and G. Zecca, Existence and uniqueness for nonlinear elliptic equations with unbounded coefficients, Ricerche Mat., 63 (2014), 355-267. doi: 10.1007/s11587-014-0202-z. |
[32] | T. Roubíček, Nonlinear Partial Differential Equations with Applications, , Birkhäuser, 2013. doi: 10.1007/978-3-0348-0513-1. |
[33] | E. Saacson and H. B. Keller, Analysis of Numerical Methods, , Wiley, 1966. |
[34] | M. V. Safonov, Non-divergence elliptic equations of second order with unbounded drift, Nonlinear Partial Diff. Equa. and Related Topics, 229 (2010), 211-232. |
[35] | Ch. Schneider and W. Alt, Regularization of linear-quadratic control problems with $L^1$-control cost, In: Pötzsche C., Heuberger C., Kaltenbacher B., Rendl F. (eds) System Modeling and Optimization. CSMO 2013. IFIP Advances in Information and Communication Technology, Springer, Berlin, Heidelberg, 443 (2014). |
[36] | G. Stampacchia, Èquations Elliptiques du Second Ordre à Coefficients Discontinus, Les Presses de L'Universite de Montreal, 1966. |
[37] | V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms, Functional Analysis and Its Applications, 38 (2004), 173-183. doi: 10.1023/B:FAIA.0000042802.86050.5e. |
[38] | V. V. Zhikov and S. E. Pastukhova, Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent, Mat. Sb., 199 (2008), 19–52; translation in Sb. Math., 199 (2008), 1751–1782. doi: 10.1070/SM2008v199n12ABEH003980. |
[39] | G. Zecca, An optimal control problem for nonlinear elliptic equations with unbounded coefficients, Discrete and Continous Dynamical Systems, Series B, 24 (2019), 1393-1409. doi: 10.3934/dcdsb.2019021. |