# American Institute of Mathematical Sciences

• Previous Article
Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition
• MCRF Home
• This Issue
• Next Article
On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems
March  2021, 11(1): 189-209. doi: 10.3934/mcrf.2020033

## Fractional optimal control problems on a star graph: Optimality system and numerical solution

 1 Department of Mathematics, Indian Institute of Technology Delhi, 110016, Delhi, India 2 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl Angewandte Mathematik Ⅱ, Cauerstr. 11, 91058 Erlangen, Germany

* Corresponding author: Mani Mehra

Received  December 2019 Revised  May 2020 Published  March 2021 Early access  June 2020

In this paper, we study optimal control problems for nonlinear fractional order boundary value problems on a star graph, where the fractional derivative is described in the Caputo sense. The adjoint state and the optimality system are derived for fractional optimal control problem (FOCP) by using the Lagrange multiplier method. Then, the existence and uniqueness of solution of the adjoint equation is proved by means of the Banach contraction principle. We also present a numerical method to find the approximate solution of the resulting optimality system. In the proposed method, the $L2$ scheme and the Grünwald-Letnikov formula is used for the approximation of the Caputo fractional derivative and the right Riemann-Liouville fractional derivative, respectively, which converts the optimality system into a system of linear algebraic equations. Two examples are provided to demonstrate the feasibility of the numerical method.

Citation: Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033
##### References:

show all references

##### References:
A sketch of the star graph with $k$ edges along with boundary control
Convergence of $y_i(x)$, $i=1,2,3$ for the optimality system $(50)$ for $\alpha=3/2$
State variables $y_i(x)$, $i=1,2,3$, for different fractional order $\alpha$ for the optimality system $(50)$ with $N=64$
Convergence of $y_i(x)$, $i=1,2,3$ for the optimality system $(54)$ for $\alpha=3/2$
Control variable $u=(u_1,u_2,u_3)$ for different values of $N$
 $N$ $u_1$ $u_2$ $u_3$ 32 .1867 .1792 .1749 64 .1834 .1762 .1718 128 .1817 .1746 .1702 256 .1808 .1738 .1694 512 .1804 .1734 .1690 1024 .1802 .1732 .1688
 $N$ $u_1$ $u_2$ $u_3$ 32 .1867 .1792 .1749 64 .1834 .1762 .1718 128 .1817 .1746 .1702 256 .1808 .1738 .1694 512 .1804 .1734 .1690 1024 .1802 .1732 .1688
Control variable $u=(u_1,u_2,u_3)$ for different fractional order $\alpha$ with $N=64$
 $\alpha$ $u_1$ $u_2$ $u_3$ 1.2 .2017 .1959 .1910 1.4 .1894 .1824 .1778 1.6 .1775 .1703 .1662 1.8 .1666 .1598 .1563 2 .1572 .1511 .1482
 $\alpha$ $u_1$ $u_2$ $u_3$ 1.2 .2017 .1959 .1910 1.4 .1894 .1824 .1778 1.6 .1775 .1703 .1662 1.8 .1666 .1598 .1563 2 .1572 .1511 .1482
 [1] Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016 [2] Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 [3] Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021007 [4] Ekta Mittal, Sunil Joshi. Note on a $k$-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045 [5] Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060 [6] Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $L^2$-subcritical data. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034 [7] Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $L^2-$norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 [8] Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013 [9] Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 [10] Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001 [11] María Guadalupe Morales, Zuzana Došlá, Francisco J. Mendoza. Riemann-Liouville derivative over the space of integrable distributions. Electronic Research Archive, 2020, 28 (2) : 567-587. doi: 10.3934/era.2020030 [12] Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $L^1$-control in coefficients for quasi-linear Dirichlet boundary value problems with $BMO$-anisotropic $p$-Laplacian. Mathematical Control & Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021 [13] Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $\alpha\in (1,2)$. Evolution Equations & Control Theory, 2021, 10 (3) : 491-509. doi: 10.3934/eect.2020077 [14] Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $p(x,.)$-Laplacian satisfying Cerami condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425 [15] Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $p$ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3497-3528. doi: 10.3934/dcdss.2020442 [16] Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030 [17] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057 [18] Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $2$D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093 [19] Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837 [20] Sawsan Alhowaity, Ernesto Pérez-Chavela, Juan Manuel Sánchez-Cerritos. The curved symmetric $2$– and $3$–center problem on constant negative surfaces. Communications on Pure & Applied Analysis, 2021, 20 (9) : 2941-2963. doi: 10.3934/cpaa.2021090

2020 Impact Factor: 1.284