-
Previous Article
Sparse regularized learning in the reproducing kernel banach spaces with the $ \ell^1 $ norm
- MFC Home
- This Issue
-
Next Article
Averaging versus voting: A comparative study of strategies for distributed classification
The nonexistence of global solution for system of q-difference inequalities
School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China |
In this paper, we obtain sufficient conditions for the nonexistence of global solutions for the system of $ q $-difference inequalities. Our approach is based on the weak formulation of the problem, a particular choice of the test function, and some $ q $-integral inequalities.
References:
[1] |
R. P. Agarwal,
Certain fractional $q$-integrals and $q$-derivatives, Proc. Cambridge Philos. Soc., 66 (1969), 365-370.
doi: 10.1017/S0305004100045060. |
[2] |
P. N. Agrawal and H. S. Kasana,
On simultaneous approximation by Szász-Mirakian operators, Bull. Inst. Math. Acad. Sinica, 22 (1994), 181-188.
|
[3] |
B. Ahmad and S. Ntouyas, Boundary value problems for $q$-difference inclusion, Abstr. Appl. Anal., 2011 (2011), Article ID 292860, 15 pages. Google Scholar |
[4] |
B. Ahmad, A. Alsaedi and S. K. Ntouyas, A study of second-order $q$-difference equations with boundary conditions, Adv. Difference Equ., 2012 (2012), 1-10.
doi: 10.1186/1687-1847-2012-35. |
[5] |
B. Ahmad, J. J. Nieto, A. Alsaedi and H. Al-Hutami,
Existence of solutions for nonlinear fractional $q$-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst., 351 (2014), 2890-2909.
doi: 10.1016/j.jfranklin.2014.01.020. |
[6] |
W. A. Al-Salam,
Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 2 (1966/67), 135-140.
doi: 10.1017/S0013091500011469. |
[7] |
H. Aydi, M. Jleli and B. Samet, On the absence of global solutions for some $q$-difference inequalities, Adv. Difference Equ., 2019 (2019), 9 pages.
doi: 10.1186/s13662-019-1985-8. |
[8] |
A. De Sole and V. G. Kac,
On integral representations of $q$-gamma and $q$-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 16 (2005), 11-29.
|
[9] |
T. Ernst, A method for $q$-calculus, J. Nonlinear Math. Phys., 10 (2003), 487-525. Google Scholar |
[10] |
F. H. Jackson,
On $q$-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1909), 253-281.
doi: 10.1017/S0080456800002751. |
[11] |
R. A. C. Ferreira,
Positive solutions for a class of boundary value problems with fractional $q$-differences, Comput. Math. Appl., 61 (2011), 367-373.
doi: 10.1016/j.camwa.2010.11.012. |
[12] |
M. N. Islam and J. T. Neugebauer,
Existence of periodic solutions for a quantum Volterra equation, Adv. Dyn. Syst. Appl., 11 (2016), 67-80.
|
[13] |
F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-200. Google Scholar |
[14] |
L. Jia, J. Cheng and Z. Feng, A $q$-analogue of Kummer's equation, Electron. J. Differential Equations, (2017), Paper No. 31, 1-20. |
[15] |
M. Jleli, M. Kirane and B. Samet,
On the absence of global solutions for quantum versions of Schrödinger equations and systems, Comput. Math. Appl., 77 (2019), 740-751.
doi: 10.1016/j.camwa.2018.10.010. |
[16] |
V. Kac and P. Cheung, Quantum Calculus, Universitext. Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4613-0071-7. |
[17] |
M. D. Kassim, K. M. Furati and N.-E. Tatar,
Non-existence for fractionally damped fractional differential problems, Acta Math. Sci. Ser. B, 37 (2017), 119-130.
doi: 10.1016/S0252-9602(16)30120-5. |
[18] |
N. Khodabakhshi and S. M. Vaezpour, Existence and uniqueness of positive solution for a class of boundary value problems with fractional $q$-differences, J. Nonlinear Convex Anal., 16 (2015), 375-384. Google Scholar |
[19] |
M. Kirane and N.-E. Tatar,
Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Z. Anal. Anwend., 25 (2006), 131-142.
doi: 10.4171/ZAA/1281. |
[20] |
M. Kirane and N.-E. Tatar,
Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions, Sib. Math. J., 48 (2007), 477-488.
doi: 10.1007/s11202-007-0050-0. |
[21] |
È. Mitidieri and S. I. Pohozaev,
A priori estimates and nonexistence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.
|
[22] |
M. D. Qassim, K. M. Furati and N.-E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2012 (2012), Article ID 391062, 17 pages.
doi: 10.1155/2012/391062. |
[23] |
P. M. Rajković, S. D. Marinković and M. S. Stanković,
Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323.
|
[24] |
W. Yang,
Positive solutions for boundary value problems involving nonlinear fractional $q$-difference equations, Differ. Equ. Appl., 5 (2013), 205-219.
doi: 10.7153/dea-05-13. |
show all references
References:
[1] |
R. P. Agarwal,
Certain fractional $q$-integrals and $q$-derivatives, Proc. Cambridge Philos. Soc., 66 (1969), 365-370.
doi: 10.1017/S0305004100045060. |
[2] |
P. N. Agrawal and H. S. Kasana,
On simultaneous approximation by Szász-Mirakian operators, Bull. Inst. Math. Acad. Sinica, 22 (1994), 181-188.
|
[3] |
B. Ahmad and S. Ntouyas, Boundary value problems for $q$-difference inclusion, Abstr. Appl. Anal., 2011 (2011), Article ID 292860, 15 pages. Google Scholar |
[4] |
B. Ahmad, A. Alsaedi and S. K. Ntouyas, A study of second-order $q$-difference equations with boundary conditions, Adv. Difference Equ., 2012 (2012), 1-10.
doi: 10.1186/1687-1847-2012-35. |
[5] |
B. Ahmad, J. J. Nieto, A. Alsaedi and H. Al-Hutami,
Existence of solutions for nonlinear fractional $q$-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst., 351 (2014), 2890-2909.
doi: 10.1016/j.jfranklin.2014.01.020. |
[6] |
W. A. Al-Salam,
Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 2 (1966/67), 135-140.
doi: 10.1017/S0013091500011469. |
[7] |
H. Aydi, M. Jleli and B. Samet, On the absence of global solutions for some $q$-difference inequalities, Adv. Difference Equ., 2019 (2019), 9 pages.
doi: 10.1186/s13662-019-1985-8. |
[8] |
A. De Sole and V. G. Kac,
On integral representations of $q$-gamma and $q$-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 16 (2005), 11-29.
|
[9] |
T. Ernst, A method for $q$-calculus, J. Nonlinear Math. Phys., 10 (2003), 487-525. Google Scholar |
[10] |
F. H. Jackson,
On $q$-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1909), 253-281.
doi: 10.1017/S0080456800002751. |
[11] |
R. A. C. Ferreira,
Positive solutions for a class of boundary value problems with fractional $q$-differences, Comput. Math. Appl., 61 (2011), 367-373.
doi: 10.1016/j.camwa.2010.11.012. |
[12] |
M. N. Islam and J. T. Neugebauer,
Existence of periodic solutions for a quantum Volterra equation, Adv. Dyn. Syst. Appl., 11 (2016), 67-80.
|
[13] |
F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-200. Google Scholar |
[14] |
L. Jia, J. Cheng and Z. Feng, A $q$-analogue of Kummer's equation, Electron. J. Differential Equations, (2017), Paper No. 31, 1-20. |
[15] |
M. Jleli, M. Kirane and B. Samet,
On the absence of global solutions for quantum versions of Schrödinger equations and systems, Comput. Math. Appl., 77 (2019), 740-751.
doi: 10.1016/j.camwa.2018.10.010. |
[16] |
V. Kac and P. Cheung, Quantum Calculus, Universitext. Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4613-0071-7. |
[17] |
M. D. Kassim, K. M. Furati and N.-E. Tatar,
Non-existence for fractionally damped fractional differential problems, Acta Math. Sci. Ser. B, 37 (2017), 119-130.
doi: 10.1016/S0252-9602(16)30120-5. |
[18] |
N. Khodabakhshi and S. M. Vaezpour, Existence and uniqueness of positive solution for a class of boundary value problems with fractional $q$-differences, J. Nonlinear Convex Anal., 16 (2015), 375-384. Google Scholar |
[19] |
M. Kirane and N.-E. Tatar,
Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Z. Anal. Anwend., 25 (2006), 131-142.
doi: 10.4171/ZAA/1281. |
[20] |
M. Kirane and N.-E. Tatar,
Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions, Sib. Math. J., 48 (2007), 477-488.
doi: 10.1007/s11202-007-0050-0. |
[21] |
È. Mitidieri and S. I. Pohozaev,
A priori estimates and nonexistence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.
|
[22] |
M. D. Qassim, K. M. Furati and N.-E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2012 (2012), Article ID 391062, 17 pages.
doi: 10.1155/2012/391062. |
[23] |
P. M. Rajković, S. D. Marinković and M. S. Stanković,
Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323.
|
[24] |
W. Yang,
Positive solutions for boundary value problems involving nonlinear fractional $q$-difference equations, Differ. Equ. Appl., 5 (2013), 205-219.
doi: 10.7153/dea-05-13. |
[1] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[2] |
Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021016 |
[3] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[4] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[5] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[6] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[7] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[8] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[9] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[10] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[11] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[12] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[13] |
José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271 |
[14] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[15] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[16] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[17] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[18] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[19] |
Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270 |
[20] |
Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020120 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]