• Previous Article
    Performance evaluation of multiobjective multiclass support vector machines maximizing geometric margins
  • NACO Home
  • This Issue
  • Next Article
    Genetic algorithm and Tabu search based methods for molecular 3D-structure prediction
2011, 1(1): 171-190. doi: 10.3934/naco.2011.1.171

Parametric excitation based bipedal walking: Control method and optimization

1. 

Division of Mechanical Systems and Applied Mechanics, Faculty of Engineering, Hiroshima University, Japan

2. 

Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Japan, Japan

Received  August 2010 Revised  November 2010 Published  February 2011

In parametric excitation walking, energy lost by a heel strike is restored by bending and stretching a swing leg, and then a sustainable gait is generated with only knee torque. In this paper, we first propose the method that combines the parametric excitation method for a swing leg with that for a support leg to improve gait efficiency. Next, we improve gait efficiency of the combined parametric excitation walking by the optimization method for reference trajectories. Numerical results show that the specific resistance of the combined method is reduced to about one tenth of those of the previous results. In addition, the results of multi-objective optimization method are presented by reformulating a single-objective optimization problem.
Citation: Yuji Harata, Yoshihisa Banno, Kouichi Taji. Parametric excitation based bipedal walking: Control method and optimization. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 171-190. doi: 10.3934/naco.2011.1.171
References:
[1]

F. Asano and Z. W. Luo, Parametrically excited dynamic bipedal walking based on up-and-down hip motion,, (Japanese), (2005), 907. Google Scholar

[2]

F. Asano and Z. W. Luo, Energy-efficient and high-speed dynamic biped locomotion based on principle of parametric excitation,, IEEE Transactions on Robotics, 24 (2008), 1289. doi: 10.1109/TRO.2008.2006234. Google Scholar

[3]

F. Asano, Z. W. Luo and S. Hyon, Parametric excitation mechanisms for dynamic bipedal walking,, Proceedings of the IEEE International Conference on Robotics and Automation, (2005), 611. doi: 10.1109/ROBOT.2005.1570185. Google Scholar

[4]

F. Asano, M. Yamakita and K. Furuta, Virtual passive dynamic walking and energy-based control Laws,, Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems, (2000), 1149. Google Scholar

[5]

C. Chevallereau and Y. Aoustin, Optimal reference trajectories for walking and running of a biped robot,, Robotica, 19 (2001), 557. doi: 10.1017/S0263574701003307. Google Scholar

[6]

G. Gabrielli and Th. von Karman, What price speed? Specific power required for propulsion of vehicles,, Mechanical Engineering, 72 (1950), 775. Google Scholar

[7]

A. Goswami, B. Espiau and A. Keramane, Limit cycles in a passive compass gait biped and passivity-mimicking control laws,, Journal of Autonomous Robots, 4 (1997), 273. doi: 10.1023/A:1008844026298. Google Scholar

[8]

J. W. Grizzle, G. Abba and F. Plestan, Asymptotically stable walking for biped robots: analysis via systems with impulse effects,, IEEE Transaction on Automatic Control, 46 (2001), 51. doi: 10.1109/9.898695. Google Scholar

[9]

Y. Harata, F. Asano, K. Taji and Y. Uno, Parametric excitation based gait generation for ornithoid walking,, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, (2008), 2940. Google Scholar

[10]

Y. Harata, F. Asano, K. Taji and Y. Uno, Ornithoid gait generation based on parametric excitation,, (Japanese), 27 (2009), 575. Google Scholar

[11]

Y. Harata, F. Asano, K. Taji and Y. Uno, Parametric excitation walking for four-linked bipedal robot,, Preprint of the 9th IFAC Symposium on Robot Control, (2009), 589. Google Scholar

[12]

Y. Harata, F. Asano, Z. W. Luo, K. Taji and Y. Uno, Biped gait generation based on parametric excitation by knee-joint actuation,, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, (2007), 2198. Google Scholar

[13]

Y. Harata, F. Asano, Z. W. Luo, K. Taji and Y. Uno, Biped gait generation based on parametric excitation by knee-joint actuation,, Robotica, 27 (2009), 1063. doi: 10.1017/S0263574709005487. Google Scholar

[14]

T. McGeer, Passive dynamic walking,, International Journal of Robotics Research, 9 (1990), 62. doi: 10.1177/027836499000900206. Google Scholar

[15]

K. Taji, Y. Banno and Y. Harata, An optimizing method for a reference trajectory of parametric excitation walking,, Robotica., (). doi: 10.1017/S0263574710000342. Google Scholar

show all references

References:
[1]

F. Asano and Z. W. Luo, Parametrically excited dynamic bipedal walking based on up-and-down hip motion,, (Japanese), (2005), 907. Google Scholar

[2]

F. Asano and Z. W. Luo, Energy-efficient and high-speed dynamic biped locomotion based on principle of parametric excitation,, IEEE Transactions on Robotics, 24 (2008), 1289. doi: 10.1109/TRO.2008.2006234. Google Scholar

[3]

F. Asano, Z. W. Luo and S. Hyon, Parametric excitation mechanisms for dynamic bipedal walking,, Proceedings of the IEEE International Conference on Robotics and Automation, (2005), 611. doi: 10.1109/ROBOT.2005.1570185. Google Scholar

[4]

F. Asano, M. Yamakita and K. Furuta, Virtual passive dynamic walking and energy-based control Laws,, Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems, (2000), 1149. Google Scholar

[5]

C. Chevallereau and Y. Aoustin, Optimal reference trajectories for walking and running of a biped robot,, Robotica, 19 (2001), 557. doi: 10.1017/S0263574701003307. Google Scholar

[6]

G. Gabrielli and Th. von Karman, What price speed? Specific power required for propulsion of vehicles,, Mechanical Engineering, 72 (1950), 775. Google Scholar

[7]

A. Goswami, B. Espiau and A. Keramane, Limit cycles in a passive compass gait biped and passivity-mimicking control laws,, Journal of Autonomous Robots, 4 (1997), 273. doi: 10.1023/A:1008844026298. Google Scholar

[8]

J. W. Grizzle, G. Abba and F. Plestan, Asymptotically stable walking for biped robots: analysis via systems with impulse effects,, IEEE Transaction on Automatic Control, 46 (2001), 51. doi: 10.1109/9.898695. Google Scholar

[9]

Y. Harata, F. Asano, K. Taji and Y. Uno, Parametric excitation based gait generation for ornithoid walking,, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, (2008), 2940. Google Scholar

[10]

Y. Harata, F. Asano, K. Taji and Y. Uno, Ornithoid gait generation based on parametric excitation,, (Japanese), 27 (2009), 575. Google Scholar

[11]

Y. Harata, F. Asano, K. Taji and Y. Uno, Parametric excitation walking for four-linked bipedal robot,, Preprint of the 9th IFAC Symposium on Robot Control, (2009), 589. Google Scholar

[12]

Y. Harata, F. Asano, Z. W. Luo, K. Taji and Y. Uno, Biped gait generation based on parametric excitation by knee-joint actuation,, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, (2007), 2198. Google Scholar

[13]

Y. Harata, F. Asano, Z. W. Luo, K. Taji and Y. Uno, Biped gait generation based on parametric excitation by knee-joint actuation,, Robotica, 27 (2009), 1063. doi: 10.1017/S0263574709005487. Google Scholar

[14]

T. McGeer, Passive dynamic walking,, International Journal of Robotics Research, 9 (1990), 62. doi: 10.1177/027836499000900206. Google Scholar

[15]

K. Taji, Y. Banno and Y. Harata, An optimizing method for a reference trajectory of parametric excitation walking,, Robotica., (). doi: 10.1017/S0263574710000342. Google Scholar

[1]

Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond. Time-delayed follow-the-leader model for pedestrians walking in line. Networks & Heterogeneous Media, 2015, 10 (3) : 579-608. doi: 10.3934/nhm.2015.10.579

[2]

Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-34. doi: 10.3934/jimo.2019030

[3]

Chi Zhou, Wansheng Tang, Ruiqing Zhao. Optimal consumption with reference-dependent preferences in on-the-job search and savings. Journal of Industrial & Management Optimization, 2017, 13 (1) : 505-529. doi: 10.3934/jimo.2016029

[4]

Shichen Zhang, Jianxiong Zhang, Jiang Shen, Wansheng Tang. A joint dynamic pricing and production model with asymmetric reference price effect. Journal of Industrial & Management Optimization, 2019, 15 (2) : 667-688. doi: 10.3934/jimo.2018064

[5]

Ryan Loxton, Qun Lin. Optimal fleet composition via dynamic programming and golden section search. Journal of Industrial & Management Optimization, 2011, 7 (4) : 875-890. doi: 10.3934/jimo.2011.7.875

[6]

Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control & Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143

[7]

Kien Ming Ng, Trung Hieu Tran. A parallel water flow algorithm with local search for solving the quadratic assignment problem. Journal of Industrial & Management Optimization, 2019, 15 (1) : 235-259. doi: 10.3934/jimo.2018041

[8]

Rui Qian, Rong Hu, Ya-Ping Fang. Local smooth representation of solution sets in parametric linear fractional programming problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 45-52. doi: 10.3934/naco.2019004

[9]

Yunsai Chen, Zhao Yang, Liang Ma, Peng Li, Yongjie Pang, Xin Zhao, Wenyi Yang. Efficient extraction algorithm for local fuzzy features of dynamic images. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1311-1325. doi: 10.3934/dcdss.2019090

[10]

Shui-Nee Chow, Yongfeng Li. Model reference control for SIRS models. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 675-697. doi: 10.3934/dcds.2009.24.675

[11]

Pranay Goel, James Sneyd. Gap junctions and excitation patterns in continuum models of islets. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1969-1990. doi: 10.3934/dcdsb.2012.17.1969

[12]

Khalid Addi, Aleksandar D. Rodić. Impact dynamics in biped locomotion analysis: Two modelling and implementation approaches. Mathematical Biosciences & Engineering, 2010, 7 (3) : 479-504. doi: 10.3934/mbe.2010.7.479

[13]

Marcelo J. Villena, Mauricio Contreras. Global and local advertising strategies: A dynamic multi-market optimal control model. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1017-1048. doi: 10.3934/jimo.2018084

[14]

Jinling Wei, Jinming Zhang, Meishuang Dong, Fan Zhang, Yunmo Chen, Sha Jin, Zhike Han. Applications of mathematics to maritime search. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 957-968. doi: 10.3934/dcdss.2019064

[15]

Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. Mathematical Biosciences & Engineering, 2008, 5 (1) : 205-216. doi: 10.3934/mbe.2008.5.205

[16]

Joey Y. Huang. Trajectory of a moving curveball in viscid flow. Conference Publications, 2001, 2001 (Special) : 191-198. doi: 10.3934/proc.2001.2001.191

[17]

Rodrigo Samprogna, Cláudia B. Gentile Moussa, Tomás Caraballo, Karina Schiabel. Trajectory and global attractors for generalized processes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3995-4020. doi: 10.3934/dcdsb.2019047

[18]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[19]

Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317

[20]

Monique Chyba, Thomas Haberkorn, Ryan N. Smith, George Wilkens. A geometric analysis of trajectory design for underwater vehicles. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 233-262. doi: 10.3934/dcdsb.2009.11.233

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]