2011, 1(2): 211-224. doi: 10.3934/naco.2011.1.211

Active incipient fault detection in continuous time systems with multiple simultaneous faults

1. 

Department of Physics and Mathematics, Tennessee State University, Nashville, Tennessee, United States

2. 

Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States

Received  October 2010 Revised  January 2011 Published  June 2011

The problem of detecting small parameter variations in linear uncertain systems due to incipient faults, with the possibility of injecting an input signal to enhance detection, is considered. Most studies assume that there is only one fault developing. Recently an active approach for two or more simultaneous faults has been introduced for the discrete time case. In this paper we extend this approach to the continuous time case. A computational method for the construction of an input signal for achieving guaranteed detection with specified precision is presented. The method is an extension of a multi-model approach used for the construction of auxiliary signals for failure detection, however, new technical issues must be addressed.
Citation: Martene L. Fair, Stephen L. Campbell. Active incipient fault detection in continuous time systems with multiple simultaneous faults. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 211-224. doi: 10.3934/naco.2011.1.211
References:
[1]

S. L. Campbell and C. D. Meyer Jr., "Generalized Inverses of Linear Transformations,", SIAM Publishers, (2008).   Google Scholar

[2]

S. L. Campbell and R. Nikoukhah, "Auxiliary signal design for failure detection,", Princeton University Press, (2004).   Google Scholar

[3]

D. Choe, S. L Campbell and R. Nikoukhah, A comparison of optimal and suboptimal auxiliary signal design approaches for robust failure detection,, IEEE Conference on Control Applications, (2005).   Google Scholar

[4]

S. L. Campbell, J. P. Chanclier and R. Nikoukhah, "Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4,", Second Edition, (2010).  doi: 10.1007/978-1-4419-5527-2.  Google Scholar

[5]

D. Choe, S. L. Campbell and R. Nikoukhah, Optimal piecewise-constant signal design for active fault detection,, International Journal of Control, 82 (2009), 130.  doi: 10.1080/00207170801993587.  Google Scholar

[6]

K. J. Drake, S. L. Campbell, I. Andjelkovic and K. Sweetingham, Active incipient failure detection: a nonlinear case study,, Proc 4th International Conference on Computing, (2006).   Google Scholar

[7]

M. Y. Chow., "Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection,", World Scientific Publishing Company, (1997).  doi: 10.1142/9789812819383.  Google Scholar

[8]

M. A. Demetriou and M. M. Polycarpou, Incipient fault diagnosis of dynamical systems using on-line approximators,, IEEE Trans. Automatic Control, 43 (1998), 1612.  doi: 10.1109/9.728881.  Google Scholar

[9]

M. Fair and S. L. Campbell, Active incipient fault detection with two simultaneous faults,, Proc. 7th IFAC Symposium on Fault Detection, (2009).   Google Scholar

[10]

M. Fair and S. L. Campbell, Active incipient fault detection with more than two simultaneous faults,, Proc. IEEE International Conference on Systems, (2009).   Google Scholar

[11]

P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part I - methodology,, IEEE Trans. Industrial Electronics, 42 (1995), 131.  doi: 10.1109/41.370378.  Google Scholar

[12]

P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part II - application,, IEEE Trans. Industrial Electronics, 42 (1995), 139.  doi: 10.1109/41.370379.  Google Scholar

[13]

R. Isermann, "Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance,", Springer, (2006).   Google Scholar

[14]

B. Jiang, M. Staroswiecki and V. Cocquempot, Active fault tolerant control for a class of nonlinear systems,, Proc. Safeprocess 2003, (2003), 127.   Google Scholar

[15]

F. Kerestecioglu and M. B. Zarrop, Input design for detection of abrupt changes in dynamical systems,, International Journal of Control, 59 (1994), 1063.  doi: 10.1080/00207179408923118.  Google Scholar

[16]

F. L. Lewis and V. L. Syrmos, "Optimal Control, Second Edition,", Wiley, (1995).   Google Scholar

[17]

H. H. Niemann, A setup for active fault diagnosis,, IEEE Transactions on Automatic Control, 51 (2006), 1572.  doi: 10.1109/TAC.2006.878724.  Google Scholar

[18]

H. H. Niemann, Active fault diagnosis in closed-loop uncertain systems,, 6th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, (2006).   Google Scholar

[19]

R. Nikoukhah and S. L. Campbell, Robust detection of incipient faults: an active approach,, Proc. IEEE Med. Conf. Control and Automation, (2006).   Google Scholar

[20]

R. Nikoukhah and S. L. Campbell, Auxiliary signal design for active failure detection in uncertain linear systems with a priori information,, Automatica, 42 (2006), 219.  doi: 10.1016/j.automatica.2005.09.011.  Google Scholar

[21]

R. Nikoukhah and S. L. Campbell, On the detection of small parameter variations in linear uncertain systems,, European J. Control, 14 (2008), 158.  doi: 10.3166/ejc.14.158-171.  Google Scholar

[22]

R. Nikoukhah, S. L. Campbell and K. J. Drake, An active approach for detection of incipient faults,, International Journal Systems Science, 41 (2010), 241.  doi: 10.1080/00207720903045817.  Google Scholar

[23]

I. R. Petersen and D. C. McFarlane, A methodology for process fault detection,, Proc. IEEE Conference Decision and Control, (1999), 4984.   Google Scholar

[24]

A. V. Savkin and I. R. Petersen, A new approach to model validation and fault diagnosis,, J. Optimization Theory and Application, 94 (1997), 241.  doi: 10.1023/A:1022676106903.  Google Scholar

[25]

M. Simandl, I. Puncochar and J. Kralovec, Rolling horizon for active fault detection,, Proc. of IEEE Conf. on Decision and Control and European Control Conf., (2005), 3789.  doi: 10.1109/CDC.2005.1582752.  Google Scholar

[26]

M. Simandl and I. Puncochar, Unified solution of optimal active fault detection and optimal control,, Proc. 2007 American Control Conference, (2007), 3222.  doi: 10.1109/ACC.2007.4282446.  Google Scholar

show all references

References:
[1]

S. L. Campbell and C. D. Meyer Jr., "Generalized Inverses of Linear Transformations,", SIAM Publishers, (2008).   Google Scholar

[2]

S. L. Campbell and R. Nikoukhah, "Auxiliary signal design for failure detection,", Princeton University Press, (2004).   Google Scholar

[3]

D. Choe, S. L Campbell and R. Nikoukhah, A comparison of optimal and suboptimal auxiliary signal design approaches for robust failure detection,, IEEE Conference on Control Applications, (2005).   Google Scholar

[4]

S. L. Campbell, J. P. Chanclier and R. Nikoukhah, "Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4,", Second Edition, (2010).  doi: 10.1007/978-1-4419-5527-2.  Google Scholar

[5]

D. Choe, S. L. Campbell and R. Nikoukhah, Optimal piecewise-constant signal design for active fault detection,, International Journal of Control, 82 (2009), 130.  doi: 10.1080/00207170801993587.  Google Scholar

[6]

K. J. Drake, S. L. Campbell, I. Andjelkovic and K. Sweetingham, Active incipient failure detection: a nonlinear case study,, Proc 4th International Conference on Computing, (2006).   Google Scholar

[7]

M. Y. Chow., "Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection,", World Scientific Publishing Company, (1997).  doi: 10.1142/9789812819383.  Google Scholar

[8]

M. A. Demetriou and M. M. Polycarpou, Incipient fault diagnosis of dynamical systems using on-line approximators,, IEEE Trans. Automatic Control, 43 (1998), 1612.  doi: 10.1109/9.728881.  Google Scholar

[9]

M. Fair and S. L. Campbell, Active incipient fault detection with two simultaneous faults,, Proc. 7th IFAC Symposium on Fault Detection, (2009).   Google Scholar

[10]

M. Fair and S. L. Campbell, Active incipient fault detection with more than two simultaneous faults,, Proc. IEEE International Conference on Systems, (2009).   Google Scholar

[11]

P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part I - methodology,, IEEE Trans. Industrial Electronics, 42 (1995), 131.  doi: 10.1109/41.370378.  Google Scholar

[12]

P. V. Goode and M. Y. Chow, Using a neural/fuzzy system to extract knowledge of incipient fault in induction motors part II - application,, IEEE Trans. Industrial Electronics, 42 (1995), 139.  doi: 10.1109/41.370379.  Google Scholar

[13]

R. Isermann, "Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance,", Springer, (2006).   Google Scholar

[14]

B. Jiang, M. Staroswiecki and V. Cocquempot, Active fault tolerant control for a class of nonlinear systems,, Proc. Safeprocess 2003, (2003), 127.   Google Scholar

[15]

F. Kerestecioglu and M. B. Zarrop, Input design for detection of abrupt changes in dynamical systems,, International Journal of Control, 59 (1994), 1063.  doi: 10.1080/00207179408923118.  Google Scholar

[16]

F. L. Lewis and V. L. Syrmos, "Optimal Control, Second Edition,", Wiley, (1995).   Google Scholar

[17]

H. H. Niemann, A setup for active fault diagnosis,, IEEE Transactions on Automatic Control, 51 (2006), 1572.  doi: 10.1109/TAC.2006.878724.  Google Scholar

[18]

H. H. Niemann, Active fault diagnosis in closed-loop uncertain systems,, 6th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, (2006).   Google Scholar

[19]

R. Nikoukhah and S. L. Campbell, Robust detection of incipient faults: an active approach,, Proc. IEEE Med. Conf. Control and Automation, (2006).   Google Scholar

[20]

R. Nikoukhah and S. L. Campbell, Auxiliary signal design for active failure detection in uncertain linear systems with a priori information,, Automatica, 42 (2006), 219.  doi: 10.1016/j.automatica.2005.09.011.  Google Scholar

[21]

R. Nikoukhah and S. L. Campbell, On the detection of small parameter variations in linear uncertain systems,, European J. Control, 14 (2008), 158.  doi: 10.3166/ejc.14.158-171.  Google Scholar

[22]

R. Nikoukhah, S. L. Campbell and K. J. Drake, An active approach for detection of incipient faults,, International Journal Systems Science, 41 (2010), 241.  doi: 10.1080/00207720903045817.  Google Scholar

[23]

I. R. Petersen and D. C. McFarlane, A methodology for process fault detection,, Proc. IEEE Conference Decision and Control, (1999), 4984.   Google Scholar

[24]

A. V. Savkin and I. R. Petersen, A new approach to model validation and fault diagnosis,, J. Optimization Theory and Application, 94 (1997), 241.  doi: 10.1023/A:1022676106903.  Google Scholar

[25]

M. Simandl, I. Puncochar and J. Kralovec, Rolling horizon for active fault detection,, Proc. of IEEE Conf. on Decision and Control and European Control Conf., (2005), 3789.  doi: 10.1109/CDC.2005.1582752.  Google Scholar

[26]

M. Simandl and I. Puncochar, Unified solution of optimal active fault detection and optimal control,, Proc. 2007 American Control Conference, (2007), 3222.  doi: 10.1109/ACC.2007.4282446.  Google Scholar

[1]

Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 125-135. doi: 10.3934/dcdsb.2001.1.125

[2]

David L. Russell. Coefficient identification and fault detection in linear elastic systems; one dimensional problems. Mathematical Control & Related Fields, 2011, 1 (3) : 391-411. doi: 10.3934/mcrf.2011.1.391

[3]

Qi Li, Hong Xue, Changxin Lu. Event-based fault detection for interval type-2 fuzzy systems with measurement outliers. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020412

[4]

Emmanuel Frénod. Homogenization-based numerical methods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : i-ix. doi: 10.3934/dcdss.201605i

[5]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[6]

Emmanuel Frénod. An attempt at classifying homogenization-based numerical methods. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : i-vi. doi: 10.3934/dcdss.2015.8.1i

[7]

Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

[8]

Abdon Atangana, José Francisco Gómez-Aguilar, Jordan Y. Hristov. Preface on "New trends of numerical and analytical methods". Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : ⅰ-ⅱ. doi: 10.3934/dcdss.20203i

[9]

Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks & Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241

[10]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[11]

Ugo Locatelli, Letizia Stefanelli. Quasi-periodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1155-1187. doi: 10.3934/dcdsb.2015.20.1155

[12]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[13]

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001

[14]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic & Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[15]

Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren, Carola-Bibiane Schönlieb. Deep learning as optimal control problems: Models and numerical methods. Journal of Computational Dynamics, 2019, 6 (2) : 171-198. doi: 10.3934/jcd.2019009

[16]

Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic & Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1

[17]

Caojin Zhang, George Yin, Qing Zhang, Le Yi Wang. Pollution control for switching diffusion models: Approximation methods and numerical results. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3667-3687. doi: 10.3934/dcdsb.2018310

[18]

Mohamed Badreddine, Thomas K. DeLillo, Saman Sahraei. A Comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 55-82. doi: 10.3934/dcdsb.2018100

[19]

Lili Ju, Wei Leng, Zhu Wang, Shuai Yuan. Numerical investigation of ensemble methods with block iterative solvers for evolution problems. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020132

[20]

Xiaowei Pang, Haiming Song, Xiaoshen Wang, Jiachuan Zhang. Efficient numerical methods for elliptic optimal control problems with random coefficient. Electronic Research Archive, 2020, 28 (2) : 1001-1022. doi: 10.3934/era.2020053

 Impact Factor: 

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]