2011, 1(3): 487-493. doi: 10.3934/naco.2011.1.487

A note on monotone approximations of minimum and maximum functions and multi-objective problems

1. 

Coordinated Science Laboratory, Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States

2. 

Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California, United States

3. 

College of Engineering, University of California at Berkeley, Berkeley, California, United States

Received  April 2011 Revised  July 2011 Published  September 2011

In paper [12] the problem of accomplishing multiple objectives by a number of agents represented as dynamic systems is considered. Each agent is assumed to have a goal which is to accomplish one or more objectives where each objective is mathematically formulated using an appropriate objective function. Sufficient conditions for accomplishing objectives are formulated using particular convergent approximations of minimum and maximum functions depending on the formulation of the goals and objectives. These approximations are differentiable functions and they monotonically converge to the corresponding minimum or maximum function. Finally, an illustrative pursuit-evasion game example of a capture of two evaders by two pursuers is provided.
    This note presents a preview of the treatment in [12].
Citation: Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487
References:
[1]

A. Bacciotti and L. Rosier, "Liapunov Functions and Stability in Control Theory,", 2nd edition, (2005).

[2]

R. A. Freeman and P. V. Kokotović, "Robust Nonlinear Control Design: State Space and Lyapunov Techniques,", Birkhäuser, (1996).

[3]

A. N. Kolmogorov and S. V. Fomin, "Introductory Real Analysis,", Dover Publications, (1975).

[4]

G. Leitmann and J. Skowronski, Avoidance control,, Journal of Optimization Theory and Applications, 23 (1977), 581. doi: 10.1007/BF00933298.

[5]

G. Leitmann, Guaranteed avoidance strategies,, Journal of Optimization Theory and Applications, 32 (1980), 569. doi: 10.1007/BF00934040.

[6]

G. Leitmann and J. Skowronski, A note on avoidance control,, Optimal Control Applications & Methods, 4 (1983), 335. doi: 10.1002/oca.4660040406.

[7]

K. M. Miettinen, "Nonlinear Multiobjective Optimization,", Kluwer Academic Publishers, (1999). doi: 10.1007/978-1-4615-5563-6.

[8]

D. M. Stipanović, Sriram and C. J. Tomlin, Strategies for agents in multi-player pursuit-evasion games,, in, (2004).

[9]

D. M. Stipanović, P. F. Hokayem, M. W. Spong and D. D. Šiljak, Cooperative avoidance control for multi-agent systems,, Journal of Dynamic Systems, 129 (2007), 699.

[10]

D. M. Stipanović, A. Melikyan and N. Hovakimyan, Some sufficient conditions for multi-player pursuit-evasion games with continuous and discrete observations,, Annals of Dynamic Games, 10 (2009), 133.

[11]

D. M. Stipanović, A. Melikyan and N. Hovakimyan, Guaranteed strategies for nonlinear multi-player pursuit-evasion games,, International Game Theory Review, 12 (2010), 1.

[12]

D. M. Stipanović, C. J. Tomlin and G. Leitmann, Monotone approximations of minimum and maximum functions and multi-objective problems,, Submitted to Applied Mathematics & Optimization., ().

show all references

References:
[1]

A. Bacciotti and L. Rosier, "Liapunov Functions and Stability in Control Theory,", 2nd edition, (2005).

[2]

R. A. Freeman and P. V. Kokotović, "Robust Nonlinear Control Design: State Space and Lyapunov Techniques,", Birkhäuser, (1996).

[3]

A. N. Kolmogorov and S. V. Fomin, "Introductory Real Analysis,", Dover Publications, (1975).

[4]

G. Leitmann and J. Skowronski, Avoidance control,, Journal of Optimization Theory and Applications, 23 (1977), 581. doi: 10.1007/BF00933298.

[5]

G. Leitmann, Guaranteed avoidance strategies,, Journal of Optimization Theory and Applications, 32 (1980), 569. doi: 10.1007/BF00934040.

[6]

G. Leitmann and J. Skowronski, A note on avoidance control,, Optimal Control Applications & Methods, 4 (1983), 335. doi: 10.1002/oca.4660040406.

[7]

K. M. Miettinen, "Nonlinear Multiobjective Optimization,", Kluwer Academic Publishers, (1999). doi: 10.1007/978-1-4615-5563-6.

[8]

D. M. Stipanović, Sriram and C. J. Tomlin, Strategies for agents in multi-player pursuit-evasion games,, in, (2004).

[9]

D. M. Stipanović, P. F. Hokayem, M. W. Spong and D. D. Šiljak, Cooperative avoidance control for multi-agent systems,, Journal of Dynamic Systems, 129 (2007), 699.

[10]

D. M. Stipanović, A. Melikyan and N. Hovakimyan, Some sufficient conditions for multi-player pursuit-evasion games with continuous and discrete observations,, Annals of Dynamic Games, 10 (2009), 133.

[11]

D. M. Stipanović, A. Melikyan and N. Hovakimyan, Guaranteed strategies for nonlinear multi-player pursuit-evasion games,, International Game Theory Review, 12 (2010), 1.

[12]

D. M. Stipanović, C. J. Tomlin and G. Leitmann, Monotone approximations of minimum and maximum functions and multi-objective problems,, Submitted to Applied Mathematics & Optimization., ().

[1]

Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control & Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51

[2]

Giovanni Colombo, Thuy T. T. Le. Higher order discrete controllability and the approximation of the minimum time function. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4293-4322. doi: 10.3934/dcds.2015.35.4293

[3]

Bai-Ni Guo, Feng Qi. Properties and applications of a function involving exponential functions. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1231-1249. doi: 10.3934/cpaa.2009.8.1231

[4]

Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

[5]

Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial & Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345

[6]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[7]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[8]

Josef Diblík, Zdeněk Svoboda. Asymptotic properties of delayed matrix exponential functions via Lambert function. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 123-144. doi: 10.3934/dcdsb.2018008

[9]

Jóhann Björnsson, Peter Giesl, Sigurdur F. Hafstein, Christopher M. Kellett. Computation of Lyapunov functions for systems with multiple local attractors. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4019-4039. doi: 10.3934/dcds.2015.35.4019

[10]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[11]

Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341

[12]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[13]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial & Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

[14]

Xilin Fu, Zhang Chen. New discrete analogue of neural networks with nonlinear amplification function and its periodic dynamic analysis. Conference Publications, 2007, 2007 (Special) : 391-398. doi: 10.3934/proc.2007.2007.391

[15]

M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure & Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233

[16]

Yu Yang, Yueping Dong, Yasuhiro Takeuchi. Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018207

[17]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[18]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[19]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[20]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

[Back to Top]