2012, 2(3): 465-485. doi: 10.3934/naco.2012.2.465

Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems

1. 

Chair for Nonlinear Dynamics, Steinbachstr. 15, 52074 Aachen, Germany

2. 

Institut für Mathematik und Statistik, Universität Konstanz, D-78457 Konstanz, Germany

Received  November 2011 Revised  January 2012 Published  August 2012

The main focus of this paper is on an a-posteriori analysis for different model-order strategies applied to optimal control problems governed by linear parabolic partial differential equations. Based on a perturbation method it is deduced how far the suboptimal control, computed on the basis of the reduced-order model, is from the (unknown) exact one. For the model-order reduction, $\mathcal H_{2,\alpha}$-norm optimal model reduction (H2), balanced truncation (BT), and proper orthogonal decomposition (POD) are studied. The proposed approach is based on semi-discretization of the underlying dynamics for the state and the adjoint equations as a large scale linear time-invariant (LTI) system. This system is reduced to a lower-dimensional one using Galerkin (POD) or Petrov-Galerkin (H2, BT) projection. The size of the reduced-order system is iteratively increased until the error in the optimal control, computed with the a-posteriori error estimator, satisfies a given accuracy. The method is illustrated with numerical tests.
Citation: Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465
References:
[1]

K. Afanasiev and M. Hinze, Adaptive control of a wake flow using proper orthogonal decomposition,, Lect. Notes Pure Appl. Math., 216 (2001), 317.

[2]

A. C. Antoulas, "Approximation of Large-Scale Dynamical Systems,", SIAM, (2005). doi: 10.1137/1.9780898718713.

[3]

N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem,, Computational Optimization and Applications, 23 (2002), 201. doi: 10.1023/A:1020576801966.

[4]

P. Benner and T. Damm, Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems,, SIAM Journal on Control and Optimization, 49 (2011), 686. doi: 10.1137/09075041X.

[5]

P. Benner and J. Saak, A Galerkin-Newton-ADI method for solving large-scale algebraic Riccati equations,, 2010. Available from: , ().

[6]

P. Benner and E. S. Quintana-Ortí, Model reduction based on spectral projection methods,, In, 45 (2005), 5.

[7]

A. Bunse-Gerstner, D. Kubalinska, G. Vossen and D. Wilczek, $h_2$-norm optimal model reduction for large-scale discrete dynamical MIMO systems,, Journal of Computational and Applied Mathematics, 233 (2010), 1202. doi: 10.1016/j.cam.2008.12.029.

[8]

A. L. Dontchev, W. W. Hager, A. B. Poore and B. Yang, Optimality, stability, and convergence in nonlinear control,, Appl. Math. and Optim., 31 (1995), 297. doi: 10.1007/BF01215994.

[9]

K. Glover, All optimal Hankel-norm approximations of linear multi-variable systems and their $L_\infty$ error bounds,, International Journal of Control, 39 (1984), 1115. doi: 10.1080/00207178408933239.

[10]

M. A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems,, C. R. Acad. Sci. Paris, 349 (2011), 873.

[11]

S. Gugercin, A. C. Antoulas and C. A. Beattie, $H_2$ model reduction for large-scale linear dynamical systems,, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 609. doi: 10.1137/060666123.

[12]

M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition,, Comput. Optim. and Appl., 39 (2008), 319. doi: 10.1007/s10589-007-9058-4.

[13]

P. Holmes, J. L. Lumley and G. Berkooz, "Turbulence, Coherent Structures, Dynamical Systems and Symmetry,", Cambridge Univ. Press, (1996). doi: 10.1017/CBO9780511622700.

[14]

M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method,, SIAM J. Optimization, 13 (2003), 865.

[15]

C. Joerres, G. Vossen and M. Herty, On an inexact gradient method using POD for a parabolic optimal control problem,, submitted, (2011).

[16]

E. A. Jonckheere and L. M. Silverman, A new set of invariants for linear systems - Application to reduced order compensator design,, IEEE Trans. Automat. Control, 28 (1983), 953. doi: 10.1109/TAC.1983.1103159.

[17]

E. Kammann, F. Tröltzsch and S. Volkwein, A method of a-posteriori error estimation with application to proper orthogonal decomposition,, submitted, (2011).

[18]

D. Kubalinska, "Optimal Interpolation-Based Model Reduction,", PhD thesis, (2008).

[19]

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems,, Numerische Mathematik, 90 (2001), 117. doi: 10.1007/s002110100282.

[20]

K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems,, ESAIM: Mathematical Modelling and Numerical Analysis, 42 (2008), 1. doi: 10.1051/m2an:2007054.

[21]

E. N. Lorenz, Empirical orthogonal functions and statistical weather prediction,, Statistical Forecasting Scientific Rep. 1, (1956).

[22]

L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera and D. V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems,, CR Acad Sci Paris Series I, 331 (2000), 1531.

[23]

K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear control problems,, in, (1997), 253.

[24]

H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems,, Mathematical Programming, 16 (1979), 98.

[25]

L. Meier and D. Luenberger, Approximation of linear constant systems,, IEEE Transactions on Automatic Control, 12 (1967), 585. doi: 10.1109/TAC.1967.1098680.

[26]

B. C. Moore, Principal component analysis in linear systems: controllability, observability and model reduction,, IEEE Trans. Automatic Control, 26 (1981), 17. doi: 10.1109/TAC.1981.1102568.

[27]

A. T. Patera and G. Rozza, "Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations,", MIT Pappalardo Graduate Monographs in Mechanical Engineering, (2006).

[28]

S. S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD,, SIAM J. Sci. Comput., 15 (2000), 457.

[29]

J. C. De Los Reyes and T. Stykel, A balanced truncation based strategy for optimal control of evolution problems,, Optim. Methods Software, 26 (2011), 673. doi: 10.1080/10556788.2010.526756.

[30]

J. Saak, "Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE Control and Model Order Reduction,", PhD thesis, (2009).

[31]

E. W. Sachs and M. Schu, A priori error estimates for reduced order models in finance,, submitted, (2011).

[32]

T. Stykel, Gramian-based model reduction for descriptor systems,, Math. Control Signals Systems, 16 (2004), 297. doi: 10.1007/s00498-004-0141-4.

[33]

T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and POD a-posteriori error estimators for an elliptic linear quadratic optimal control problem,, Mathematical and Computer Modelling of Dynamical Systems, 17 (2011), 355.

[34]

F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems,, Computational Optimization and Applications, 44 (2009), 83. doi: 10.1007/s10589-008-9224-3.

[35]

F. Tröltzsch., "Optimal Control of Partial Differential Equations. Theory, Methods and Applications,", American Math. Society, 112 (2010).

[36]

R. Usmani, Inversion of a tridiagonal Jacobi matrix,, Linear Algebra Appl., 212/213 (1994), 413. doi: 10.1016/0024-3795(94)90414-6.

[37]

S. Volkwein, Model reduction using proper orthogonal decomposition,, Lecture Notes, (2011).

[38]

S. Volkwein, Optimality system POD and a-posteriori error analysis for linear-quadratic problems,, to appear in Control and Cybernetics, (2012).

[39]

G. Vossen, $\mathcal H_{2,\alpha}$-norm optimal model reduction for optimal control problems subject to parabolic and hyperbolic evolution equations,, submitted, (2011).

show all references

References:
[1]

K. Afanasiev and M. Hinze, Adaptive control of a wake flow using proper orthogonal decomposition,, Lect. Notes Pure Appl. Math., 216 (2001), 317.

[2]

A. C. Antoulas, "Approximation of Large-Scale Dynamical Systems,", SIAM, (2005). doi: 10.1137/1.9780898718713.

[3]

N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem,, Computational Optimization and Applications, 23 (2002), 201. doi: 10.1023/A:1020576801966.

[4]

P. Benner and T. Damm, Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems,, SIAM Journal on Control and Optimization, 49 (2011), 686. doi: 10.1137/09075041X.

[5]

P. Benner and J. Saak, A Galerkin-Newton-ADI method for solving large-scale algebraic Riccati equations,, 2010. Available from: , ().

[6]

P. Benner and E. S. Quintana-Ortí, Model reduction based on spectral projection methods,, In, 45 (2005), 5.

[7]

A. Bunse-Gerstner, D. Kubalinska, G. Vossen and D. Wilczek, $h_2$-norm optimal model reduction for large-scale discrete dynamical MIMO systems,, Journal of Computational and Applied Mathematics, 233 (2010), 1202. doi: 10.1016/j.cam.2008.12.029.

[8]

A. L. Dontchev, W. W. Hager, A. B. Poore and B. Yang, Optimality, stability, and convergence in nonlinear control,, Appl. Math. and Optim., 31 (1995), 297. doi: 10.1007/BF01215994.

[9]

K. Glover, All optimal Hankel-norm approximations of linear multi-variable systems and their $L_\infty$ error bounds,, International Journal of Control, 39 (1984), 1115. doi: 10.1080/00207178408933239.

[10]

M. A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems,, C. R. Acad. Sci. Paris, 349 (2011), 873.

[11]

S. Gugercin, A. C. Antoulas and C. A. Beattie, $H_2$ model reduction for large-scale linear dynamical systems,, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 609. doi: 10.1137/060666123.

[12]

M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition,, Comput. Optim. and Appl., 39 (2008), 319. doi: 10.1007/s10589-007-9058-4.

[13]

P. Holmes, J. L. Lumley and G. Berkooz, "Turbulence, Coherent Structures, Dynamical Systems and Symmetry,", Cambridge Univ. Press, (1996). doi: 10.1017/CBO9780511622700.

[14]

M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method,, SIAM J. Optimization, 13 (2003), 865.

[15]

C. Joerres, G. Vossen and M. Herty, On an inexact gradient method using POD for a parabolic optimal control problem,, submitted, (2011).

[16]

E. A. Jonckheere and L. M. Silverman, A new set of invariants for linear systems - Application to reduced order compensator design,, IEEE Trans. Automat. Control, 28 (1983), 953. doi: 10.1109/TAC.1983.1103159.

[17]

E. Kammann, F. Tröltzsch and S. Volkwein, A method of a-posteriori error estimation with application to proper orthogonal decomposition,, submitted, (2011).

[18]

D. Kubalinska, "Optimal Interpolation-Based Model Reduction,", PhD thesis, (2008).

[19]

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems,, Numerische Mathematik, 90 (2001), 117. doi: 10.1007/s002110100282.

[20]

K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems,, ESAIM: Mathematical Modelling and Numerical Analysis, 42 (2008), 1. doi: 10.1051/m2an:2007054.

[21]

E. N. Lorenz, Empirical orthogonal functions and statistical weather prediction,, Statistical Forecasting Scientific Rep. 1, (1956).

[22]

L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera and D. V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems,, CR Acad Sci Paris Series I, 331 (2000), 1531.

[23]

K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear control problems,, in, (1997), 253.

[24]

H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems,, Mathematical Programming, 16 (1979), 98.

[25]

L. Meier and D. Luenberger, Approximation of linear constant systems,, IEEE Transactions on Automatic Control, 12 (1967), 585. doi: 10.1109/TAC.1967.1098680.

[26]

B. C. Moore, Principal component analysis in linear systems: controllability, observability and model reduction,, IEEE Trans. Automatic Control, 26 (1981), 17. doi: 10.1109/TAC.1981.1102568.

[27]

A. T. Patera and G. Rozza, "Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations,", MIT Pappalardo Graduate Monographs in Mechanical Engineering, (2006).

[28]

S. S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD,, SIAM J. Sci. Comput., 15 (2000), 457.

[29]

J. C. De Los Reyes and T. Stykel, A balanced truncation based strategy for optimal control of evolution problems,, Optim. Methods Software, 26 (2011), 673. doi: 10.1080/10556788.2010.526756.

[30]

J. Saak, "Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE Control and Model Order Reduction,", PhD thesis, (2009).

[31]

E. W. Sachs and M. Schu, A priori error estimates for reduced order models in finance,, submitted, (2011).

[32]

T. Stykel, Gramian-based model reduction for descriptor systems,, Math. Control Signals Systems, 16 (2004), 297. doi: 10.1007/s00498-004-0141-4.

[33]

T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and POD a-posteriori error estimators for an elliptic linear quadratic optimal control problem,, Mathematical and Computer Modelling of Dynamical Systems, 17 (2011), 355.

[34]

F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems,, Computational Optimization and Applications, 44 (2009), 83. doi: 10.1007/s10589-008-9224-3.

[35]

F. Tröltzsch., "Optimal Control of Partial Differential Equations. Theory, Methods and Applications,", American Math. Society, 112 (2010).

[36]

R. Usmani, Inversion of a tridiagonal Jacobi matrix,, Linear Algebra Appl., 212/213 (1994), 413. doi: 10.1016/0024-3795(94)90414-6.

[37]

S. Volkwein, Model reduction using proper orthogonal decomposition,, Lecture Notes, (2011).

[38]

S. Volkwein, Optimality system POD and a-posteriori error analysis for linear-quadratic problems,, to appear in Control and Cybernetics, (2012).

[39]

G. Vossen, $\mathcal H_{2,\alpha}$-norm optimal model reduction for optimal control problems subject to parabolic and hyperbolic evolution equations,, submitted, (2011).

[1]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[2]

Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547

[3]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[4]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[5]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[6]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[7]

Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056

[8]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[9]

Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015

[10]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[11]

Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control & Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83

[12]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[13]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations & Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[14]

Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203

[15]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[16]

Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435

[17]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[18]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[19]

Walter Allegretto, Yanping Lin, Ningning Yan. A posteriori error analysis for FEM of American options. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 957-978. doi: 10.3934/dcdsb.2006.6.957

[20]

Djamila Moulay, M. A. Aziz-Alaoui, Hee-Dae Kwon. Optimal control of chikungunya disease: Larvae reduction, treatment and prevention. Mathematical Biosciences & Engineering, 2012, 9 (2) : 369-392. doi: 10.3934/mbe.2012.9.369

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]