• Previous Article
    Complete solutions and triality theory to a nonconvex optimization problem with double-well potential in $\mathbb{R}^n $
  • NACO Home
  • This Issue
  • Next Article
    Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming
2013, 3(2): 261-270. doi: 10.3934/naco.2013.3.261

The stationary iterations revisited

1. 

Department of Computer Science, Fitchburg State University, Fitchburg, MA 01420, United States

2. 

Institute of Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433, China

3. 

School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai 200433, China

Received  February 2012 Revised  January 2013 Published  April 2013

In this paper, we first present a necessary and sufficient conditions for the weakly and strongly convergence of the general stationary iterations $x^{(k+1)} = T x^{(k)} +c$ with initial iteration matrix $T$ and vectors $c$ and $x^{(0)}$. Then we apply these general results and present convergence conditions for the stationary iterations for solving singular linear system $A x = b$. We show that our convergence conditions are weaker and more general than the known results.
Citation: Xuzhou Chen, Xinghua Shi, Yimin Wei. The stationary iterations revisited. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 261-270. doi: 10.3934/naco.2013.3.261
References:
[1]

A. Berman and R. Plemmons, "Nonnegative Matrices in Mathematical Science,", Academic Press, (1979). Google Scholar

[2]

P. Bochev and R. B. Lehoucq, On the finite element solution of the pure Neumann problem,, SIAM Review, 47 (2005), 50. doi: 10.1137/S0036144503426074. Google Scholar

[3]

S. Campbell and C. Meyer, "Generalized Inverses of Linear Transformations,", Pitman, (1979). Google Scholar

[4]

Z. Cao, On the convergence of iterative methods for solving singular linear systems,, Journal of Computational and Applied Mathematics, 145 (2002), 1. doi: 10.1016/S0377-0427(01)00531-3. Google Scholar

[5]

Z. Cao, On the convergence of general stationary linear iterative methods for singular linear systems,, SIAM Journal on Matrix Analysis and Applications, 29 (2008), 1382. doi: 10.1137/060671243. Google Scholar

[6]

X. Chen and R. E. Hartwig, The Picard iteration and its application,, Linear and Multilinear Algebra, 54 (2006), 329. doi: 10.1080/03081080500209703. Google Scholar

[7]

X. Cui, Y. Wei and N. Zhang, Quotient convergence and multi-splitting methods for solving singular linear equations,, Calcolo, 44 (2007), 21. doi: 10.1007/s10092-007-0127-y. Google Scholar

[8]

M. Eiermann, I. Marek and W. Niethammer, On the solution of singular linear systems of algebraic equations by semi-iterative methods,, Numerische Mathematik, 53 (1988), 265. doi: 10.1007/BF01404464. Google Scholar

[9]

A. Frommer, R. Nabben and D. Szyld, Convergence of stationary iterative methods for Hermitian semidefinite linear systems and applications to Schwarz methods,, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 925. doi: 2009m:65055. Google Scholar

[10]

F. R. Gantmacher, "The Theory of Matrices,", Chelsea, 1 (1960). Google Scholar

[11]

N. Higham and P. Knight, Finite precision behavior of stationary iteration for solving singular systems,, Linear Algebra and Its Applications, 192 (1993), 165. doi: 10.1016/0024-3795(93)90242-G. Google Scholar

[12]

H. Keller, On the solution of singular and semi-definite linear systems by iteration,, SIAM Journal on Numerical Analysis, 2 (1965), 281. Google Scholar

[13]

Y. Lee, J. Wu and L. Zikatanov, On the convergence of iterative methods for semidefinite linear systems,, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 634. doi: 10.1137/050644197. Google Scholar

[14]

L. Lin, Y. Wei, C. Woo and J. Zhou, On the convergence of splittings for semidefinite linear systems,, Linear Algebra and its Applications, 429 (2008), 2555. doi: 10.1016/j.laa.2007.12.019. Google Scholar

[15]

L. Lin, Y. Wei and N. Zhang, Convergence and quotient convergence of iterative methods for solving singular linear equations with index one,, Linear Algebra and its Applications, 430 (2009), 1665. doi: 10.1016/j.laa.2008.06.019. Google Scholar

[16]

G. I. Marchuk and Y. Kuznetzov, "Iterative Methods and Quadratic Functionals,", Science Press, (1972). Google Scholar

[17]

M. Neumann, Subproper splitting for rectangular matrices,, Linear Algebra and its Applications, 14 (1976), 41. doi: 10.1016/0024-3795(76)90062-8. Google Scholar

[18]

Y. Song, Semiconvergence of nonnegative splittings for singular matrices,, Numerische Mathematik, 85 (2000), 109. doi: 10.1007/s002110050479. Google Scholar

[19]

G. Wang, Y. Wei, and S. Qiao, "Generalized Inverses: Theory and Computations,", Science Press, (2004). Google Scholar

[20]

N. Zhang and Y. Wei, On the convergence of general stationary iterative methods for range-Hermitian singular linear systems,, Numerical Linear Algebra with Applications, 17 (2010), 139. doi: 10.1002/nla.663. Google Scholar

show all references

References:
[1]

A. Berman and R. Plemmons, "Nonnegative Matrices in Mathematical Science,", Academic Press, (1979). Google Scholar

[2]

P. Bochev and R. B. Lehoucq, On the finite element solution of the pure Neumann problem,, SIAM Review, 47 (2005), 50. doi: 10.1137/S0036144503426074. Google Scholar

[3]

S. Campbell and C. Meyer, "Generalized Inverses of Linear Transformations,", Pitman, (1979). Google Scholar

[4]

Z. Cao, On the convergence of iterative methods for solving singular linear systems,, Journal of Computational and Applied Mathematics, 145 (2002), 1. doi: 10.1016/S0377-0427(01)00531-3. Google Scholar

[5]

Z. Cao, On the convergence of general stationary linear iterative methods for singular linear systems,, SIAM Journal on Matrix Analysis and Applications, 29 (2008), 1382. doi: 10.1137/060671243. Google Scholar

[6]

X. Chen and R. E. Hartwig, The Picard iteration and its application,, Linear and Multilinear Algebra, 54 (2006), 329. doi: 10.1080/03081080500209703. Google Scholar

[7]

X. Cui, Y. Wei and N. Zhang, Quotient convergence and multi-splitting methods for solving singular linear equations,, Calcolo, 44 (2007), 21. doi: 10.1007/s10092-007-0127-y. Google Scholar

[8]

M. Eiermann, I. Marek and W. Niethammer, On the solution of singular linear systems of algebraic equations by semi-iterative methods,, Numerische Mathematik, 53 (1988), 265. doi: 10.1007/BF01404464. Google Scholar

[9]

A. Frommer, R. Nabben and D. Szyld, Convergence of stationary iterative methods for Hermitian semidefinite linear systems and applications to Schwarz methods,, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 925. doi: 2009m:65055. Google Scholar

[10]

F. R. Gantmacher, "The Theory of Matrices,", Chelsea, 1 (1960). Google Scholar

[11]

N. Higham and P. Knight, Finite precision behavior of stationary iteration for solving singular systems,, Linear Algebra and Its Applications, 192 (1993), 165. doi: 10.1016/0024-3795(93)90242-G. Google Scholar

[12]

H. Keller, On the solution of singular and semi-definite linear systems by iteration,, SIAM Journal on Numerical Analysis, 2 (1965), 281. Google Scholar

[13]

Y. Lee, J. Wu and L. Zikatanov, On the convergence of iterative methods for semidefinite linear systems,, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 634. doi: 10.1137/050644197. Google Scholar

[14]

L. Lin, Y. Wei, C. Woo and J. Zhou, On the convergence of splittings for semidefinite linear systems,, Linear Algebra and its Applications, 429 (2008), 2555. doi: 10.1016/j.laa.2007.12.019. Google Scholar

[15]

L. Lin, Y. Wei and N. Zhang, Convergence and quotient convergence of iterative methods for solving singular linear equations with index one,, Linear Algebra and its Applications, 430 (2009), 1665. doi: 10.1016/j.laa.2008.06.019. Google Scholar

[16]

G. I. Marchuk and Y. Kuznetzov, "Iterative Methods and Quadratic Functionals,", Science Press, (1972). Google Scholar

[17]

M. Neumann, Subproper splitting for rectangular matrices,, Linear Algebra and its Applications, 14 (1976), 41. doi: 10.1016/0024-3795(76)90062-8. Google Scholar

[18]

Y. Song, Semiconvergence of nonnegative splittings for singular matrices,, Numerische Mathematik, 85 (2000), 109. doi: 10.1007/s002110050479. Google Scholar

[19]

G. Wang, Y. Wei, and S. Qiao, "Generalized Inverses: Theory and Computations,", Science Press, (2004). Google Scholar

[20]

N. Zhang and Y. Wei, On the convergence of general stationary iterative methods for range-Hermitian singular linear systems,, Numerical Linear Algebra with Applications, 17 (2010), 139. doi: 10.1002/nla.663. Google Scholar

[1]

Grzegorz Graff, Piotr Nowak-Przygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 843-856. doi: 10.3934/dcds.2006.16.843

[2]

Daniel Alpay, Eduard Tsekanovskiĭ. Subclasses of Herglotz-Nevanlinna matrix-valued functtons and linear systems. Conference Publications, 2001, 2001 (Special) : 1-13. doi: 10.3934/proc.2001.2001.1

[3]

Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic & Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031

[4]

Yanxing Cui, Chuanlong Wang, Ruiping Wen. On the convergence of generalized parallel multisplitting iterative methods for semidefinite linear systems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 863-873. doi: 10.3934/naco.2012.2.863

[5]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[6]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[7]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[8]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[9]

Wei-guo Wang, Wei-chao Wang, Ren-cang Li. Deflating irreducible singular M-matrix algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 491-518. doi: 10.3934/naco.2013.3.491

[10]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[11]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[12]

Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 711-722. doi: 10.3934/dcdss.2013.6.711

[13]

M. Grasselli, Hana Petzeltová, Giulio Schimperna. Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 827-838. doi: 10.3934/cpaa.2006.5.827

[14]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[15]

Fernando Hernando, Diego Ruano. New linear codes from matrix-product codes with polynomial units. Advances in Mathematics of Communications, 2010, 4 (3) : 363-367. doi: 10.3934/amc.2010.4.363

[16]

Jiang-Xia Nan, Deng-Feng Li. Linear programming technique for solving interval-valued constraint matrix games. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1059-1070. doi: 10.3934/jimo.2014.10.1059

[17]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[18]

Zaki Chbani, Hassan Riahi. Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 353-366. doi: 10.3934/naco.2013.3.353

[19]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[20]

Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]