2016, 6(3): 329-337. doi: 10.3934/naco.2016015

Partial fraction expansion based frequency weighted model reduction for discrete-time systems

1. 

Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh 211004, India

2. 

School of Electrical and Electronics Engineering, University of Western Australia, 35 Stirling Highway, WA 6009, Australia, Australia

Received  July 2015 Revised  September 2016 Published  September 2016

In this paper, a partial fraction expansion based frequency weighted model reduction algorithm is developed for discrete-time systems. The proposed method is an extension to the method by Sreeram et al. [13] and it yields stable reduced order models with both single and double sided weighting functions. Effectiveness of the proposed algorithm is demonstrated by a numerical example.
Citation: Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015
References:
[1]

D. W. Ding, X. Du and X. Li, Finite-frequency model reduction of two-dimensional digital filters,, IEEE Trans. Autom. Control, 60 (2015), 1624. doi: 10.1109/TAC.2014.2359305. Google Scholar

[2]

X. Du, F. Fan, D. W. Ding and F. Liu, Finite-frequency model order reduction of discrete-time linear time-delayed systems,, Nonlinear Dynamics, 83 (2016), 2485. doi: 10.1007/s11071-015-2496-0. Google Scholar

[3]

D. Enns, Model reduction with balanced realizations: An error bound and a frequency weighted generalization,, In: Proceedings of the 23rd IEEE Conference on Decision and Control, (1984), 127. Google Scholar

[4]

M. Imran and A. Ghafoor, Model reduction of descriptor systems using frequency limited gramians,, J. Franklin Inst., 352 (2015), 33. doi: 10.1016/j.jfranklin.2014.10.013. Google Scholar

[5]

X. Li, C. Yu and H. Gao, Frequency limited H model reduction for positive systems,, IEEE Trans. Autom. Control, 60 (2015), 1093. doi: 10.1109/TAC.2014.2352751. Google Scholar

[6]

C. A. Lin and T. Y. Chiu, Model reduction via frequency weighted balanced realization,, Control Theory and Advanced Technology, 8 (1992), 341. Google Scholar

[7]

Y. Liu and B. D. O. Anderson, Singular perturbation approximation of balanced systems,, International Journal of Control, 50 (1989), 1339. doi: 10.1080/00207178908953437. Google Scholar

[8]

B. C. Moore, Principal component analysis in linear system: Controllability, observability, and model reduction,, IEEE Trans. Automat. Contr, AC-26 (1981), 17. doi: 10.1109/TAC.1981.1102568. Google Scholar

[9]

U. M. Saggaf and G. F. Franklin, On model reduction,, Proc. of the 23rd IEEE Conf. on Decision and Control, (1986), 1064. Google Scholar

[10]

U. M. Saggaf and G. F. Franklin, Model reduction via balanced realization,, IEEE Trans. on Autom. Control, AC-33 (1988), 687. doi: 10.1109/9.1280. Google Scholar

[11]

H. R. Shaker and M. Tahavori, Frequency interval model reduction of bilinear systems,, IEEE Trans. Autom. Control, 59 (2014), 1948. doi: 10.1109/TAC.2013.2295661. Google Scholar

[12]

V. Sreeram and B. D. O. Anderson, Frequency weighted balanced reduction technique: A generalization and an error bound,, Proceedings of the 34th IEEE Conference on Decision and Control, (1995), 3576. Google Scholar

[13]

V. Sreeram, S. Sahlan, W. M. W Muda, T. Fernando and H. H. C. Iu, A generalised partial-fraction-expansion based frequency weighted balanced truncation technique,, International Journal of Control, 86 (2013), 833. doi: 10.1080/00207179.2013.764017. Google Scholar

[14]

T. Van-Gestel, B. Anderson and P. Van-Overschee, On frequency weighted balanced truncation: Hankel singular values and error bounds,, European Journal of Control, 7 (2001), 584. Google Scholar

[15]

G. Wang, V. Sreeram and W. Q. Liu, A new frequency-weighted balanced truncation method and an error bound,, IEEE Transactions on Automatic Control, 44 (1999), 1734. doi: 10.1109/9.788542. Google Scholar

show all references

References:
[1]

D. W. Ding, X. Du and X. Li, Finite-frequency model reduction of two-dimensional digital filters,, IEEE Trans. Autom. Control, 60 (2015), 1624. doi: 10.1109/TAC.2014.2359305. Google Scholar

[2]

X. Du, F. Fan, D. W. Ding and F. Liu, Finite-frequency model order reduction of discrete-time linear time-delayed systems,, Nonlinear Dynamics, 83 (2016), 2485. doi: 10.1007/s11071-015-2496-0. Google Scholar

[3]

D. Enns, Model reduction with balanced realizations: An error bound and a frequency weighted generalization,, In: Proceedings of the 23rd IEEE Conference on Decision and Control, (1984), 127. Google Scholar

[4]

M. Imran and A. Ghafoor, Model reduction of descriptor systems using frequency limited gramians,, J. Franklin Inst., 352 (2015), 33. doi: 10.1016/j.jfranklin.2014.10.013. Google Scholar

[5]

X. Li, C. Yu and H. Gao, Frequency limited H model reduction for positive systems,, IEEE Trans. Autom. Control, 60 (2015), 1093. doi: 10.1109/TAC.2014.2352751. Google Scholar

[6]

C. A. Lin and T. Y. Chiu, Model reduction via frequency weighted balanced realization,, Control Theory and Advanced Technology, 8 (1992), 341. Google Scholar

[7]

Y. Liu and B. D. O. Anderson, Singular perturbation approximation of balanced systems,, International Journal of Control, 50 (1989), 1339. doi: 10.1080/00207178908953437. Google Scholar

[8]

B. C. Moore, Principal component analysis in linear system: Controllability, observability, and model reduction,, IEEE Trans. Automat. Contr, AC-26 (1981), 17. doi: 10.1109/TAC.1981.1102568. Google Scholar

[9]

U. M. Saggaf and G. F. Franklin, On model reduction,, Proc. of the 23rd IEEE Conf. on Decision and Control, (1986), 1064. Google Scholar

[10]

U. M. Saggaf and G. F. Franklin, Model reduction via balanced realization,, IEEE Trans. on Autom. Control, AC-33 (1988), 687. doi: 10.1109/9.1280. Google Scholar

[11]

H. R. Shaker and M. Tahavori, Frequency interval model reduction of bilinear systems,, IEEE Trans. Autom. Control, 59 (2014), 1948. doi: 10.1109/TAC.2013.2295661. Google Scholar

[12]

V. Sreeram and B. D. O. Anderson, Frequency weighted balanced reduction technique: A generalization and an error bound,, Proceedings of the 34th IEEE Conference on Decision and Control, (1995), 3576. Google Scholar

[13]

V. Sreeram, S. Sahlan, W. M. W Muda, T. Fernando and H. H. C. Iu, A generalised partial-fraction-expansion based frequency weighted balanced truncation technique,, International Journal of Control, 86 (2013), 833. doi: 10.1080/00207179.2013.764017. Google Scholar

[14]

T. Van-Gestel, B. Anderson and P. Van-Overschee, On frequency weighted balanced truncation: Hankel singular values and error bounds,, European Journal of Control, 7 (2001), 584. Google Scholar

[15]

G. Wang, V. Sreeram and W. Q. Liu, A new frequency-weighted balanced truncation method and an error bound,, IEEE Transactions on Automatic Control, 44 (1999), 1734. doi: 10.1109/9.788542. Google Scholar

[1]

Martin Redmann, Peter Benner. Approximation and model order reduction for second order systems with Levy-noise. Conference Publications, 2015, 2015 (special) : 945-953. doi: 10.3934/proc.2015.0945

[2]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[3]

Rua Murray. Approximation error for invariant density calculations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 535-557. doi: 10.3934/dcds.1998.4.535

[4]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[5]

Igor E. Pritsker and Richard S. Varga. Weighted polynomial approximation in the complex plane. Electronic Research Announcements, 1997, 3: 38-44.

[6]

Araz Hashemi, George Yin, Le Yi Wang. Sign-error adaptive filtering algorithms involving Markovian parameters. Mathematical Control & Related Fields, 2015, 5 (4) : 781-806. doi: 10.3934/mcrf.2015.5.781

[7]

Andrew Raich. Heat equations and the Weighted $\bar\partial$-problem. Communications on Pure & Applied Analysis, 2012, 11 (3) : 885-909. doi: 10.3934/cpaa.2012.11.885

[8]

Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic & Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063

[9]

Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008

[10]

L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555

[11]

Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen. Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 93-115. doi: 10.3934/mbe.2009.6.93

[12]

Houssein Ayoub, Bedreddine Ainseba, Michel Langlais, Rodolphe Thiébaut. Parameters identification for a model of T cell homeostasis. Mathematical Biosciences & Engineering, 2015, 12 (5) : 917-936. doi: 10.3934/mbe.2015.12.917

[13]

Kangbo Bao, Libin Rong, Qimin Zhang. Analysis of a stochastic SIRS model with interval parameters. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4827-4849. doi: 10.3934/dcdsb.2019033

[14]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic & Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003

[15]

Andrei Korobeinikov, Aleksei Archibasov, Vladimir Sobolev. Order reduction for an RNA virus evolution model. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1007-1016. doi: 10.3934/mbe.2015.12.1007

[16]

Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015

[17]

Sarbaz H. A. Khoshnaw. Reduction of a kinetic model of active export of importins. Conference Publications, 2015, 2015 (special) : 705-722. doi: 10.3934/proc.2015.0705

[18]

D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 59-73. doi: 10.3934/mbe.2013.10.59

[19]

Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789-801. doi: 10.3934/mbe.2008.5.789

[20]

Jérôme Coville. Nonlocal refuge model with a partial control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1421-1446. doi: 10.3934/dcds.2015.35.1421

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

[Back to Top]