[1]
|
A. D. Athanassopoulos, Goal programming & data envelopment analysis (godea) for target-based multi-level planning: allocating central grants to the greek local authorities, European Journal of Operational Research, 87 (1995), 535-550.
|
[2]
|
J. E. Beasley, Allocating fixed costs and resources via data envelopment analysis, European Journal of Operational Research, 147 (2003), 198-216.
|
[3]
|
A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Naval Research Logistics Quarterly, 9 (1962), 181-186.
doi: 10.1002/nav.3800090303.
|
[4]
|
A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8.
|
[5]
|
A. Dehnokhalaji, M. Ghiyasi and P. Korhonen, Resource allocation based on cost efficiency, Journal of the Operational Research Society, 68 (2017), 1279-1289.
|
[6]
|
J. Du, L. Liang, Y. Chen and G. B. Bi, Dea-based production planning, Omega, 38 (2010), 105-112.
|
[7]
|
A. Emrouznejad and K. De Witte, Cooper-framework: A unified process for non-parametric projects, European Journal of Operational Research, 207 (2010), 1573-1586.
|
[8]
|
L. Fang and H. Li, Centralized resource allocation based on the cost–revenue analysis, Computers & Industrial Engineering, 85 (2015), 395-401.
|
[9]
|
M. J. Farrell, The measurement of productive efficiency, , Journal of the Royal Statistical Society, Series A (General), 253–290.
|
[10]
|
S. Gattoufi, G. R. Amin and A. Emrouznejad, A new inverse dea method for merging banks, IMA Journal of Management Mathematics, 25 (2014), 73-87.
|
[11]
|
B. Golany, F. Phillips and J. Rousseau, Models for improved effectiveness based on dea efficiency results, IIE Transactions, 25 (1993), 2-10.
|
[12]
|
B. Golany and E. Tamir, Evaluating efficiency-effectiveness-equality trade-offs: A data envelopment analysis approach, Management Science, 41 (1995), 1172-1184.
|
[13]
|
G. R. Jahanshahloo, J. Sadeghi and M. Khodabakhshi, Fair ranking of the decision making units using optimistic and pessimistic weights in data envelopment analysis, RAIRO-Operations Research, 51 (2017), 253-260.
doi: 10.1051/ro/2016023.
|
[14]
|
G. R. Jahanshahloo, J. Sadeghi and M. Khodabakhshi, Proposing a method for fixed cost allocation using dea based on the efficiency invariance and common set of weights principles, Mathematical Methods of Operations Research, 85 (2007), 1-18.
doi: 10.1007/s00186-016-0563-z.
|
[15]
|
P. Korhonen and M. Syrjänen, Resource allocation based on efficiency analysis, Management Science, 50 (2004), 1134-1144.
|
[16]
|
F. Li, Q. Zhu and L. Liang, Allocating a fixed cost based on a dea-game cross efficiency approach, Expert Systems with Applications, 96 (2018), 196-207.
doi: 10.1007/s11424-015-4211-0.
|
[17]
|
F. Li, Q. Zhu and L. Liang, A new data envelopment analysis based approach for fixed cost allocation, Annals of Operations Research, 1–26.
|
[18]
|
F. H. Lotfi, A. Hatami-Marbini, P. J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting targets using a common-weights dea approach, Computers & Industrial Engineering, 64 (2013), 631-640.
|
[19]
|
S. Lozano, G. Villa and B. Adenso-Dıaz, Centralised target setting for regional recycling operations using dea, Omega, 32 (2004), 101-110.
|
[20]
|
S. Lozano and G. Villa, Centralized resource allocation using data envelopment analysis, Journal of Productivity Analysis, 22 (2004), 143-161.
|
[21]
|
N. Nasrabadi, A. Dehnokhalaji, N. A. Kiani, P. J. Korhonen and J. Wallenius, Resource allocation for performance improvement, Annals of Operations Research, 196 (2012), 459-468.
doi: 10.1007/s10479-011-1016-y.
|
[22]
|
M. Pervin, G. C. Mahata and S. K. Roy, An inventory model with declining demand market for deteriorating items under a trade credit policy, International Journal of Management Science and Engineering Management, 11 (2016), 243-251.
|
[23]
|
M. Pervin, S. K. Roy and G. W. Weber, A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numerical Algebra, Control & Optimization, 7 (2017), 21-50.
doi: 10.3934/naco.2017002.
|
[24]
|
M. Pervin, S. K. Roy and G.-W. Weber, Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Annals of Operations Research, 260 (2018), 437-460.
doi: 10.1007/s10479-016-2355-5.
|
[25]
|
M. Pervin, S. K. Roy and G. W. Weber, An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numerical Algebra, Control & Optimization, 8 (2018), 169-191.
|
[26]
|
M. Pervin, S. K. Roy and G. W. Weber, Multi-item deteriorating two-echelon inventory model with price-and stock-dependent demand: A trade-credit policy, Journal of Industrial & Management Optimization, 15 (2019), 1345-1373.
doi: 10.3934/jimo.2018098.
|
[27]
|
J. Sadeghi and A. Dehnokhalaji, A comprehensive method for the centralized resource allocation in dea, Computers & Industrial Engineering, 127 (2019), 344-352.
|
[28]
|
K. Tone, A slacks-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 130 (2001), 498-509.
doi: 10.1016/S0377-2217(99)00407-5.
|
[29]
|
P. Wanke, C. Barros and A. Emrouznejad, A comparison between stochastic dea and fuzzy dea approaches: revisiting efficiency in angolan banks, RAIRO-Operations Research, 52 (2018), 285-303.
doi: 10.1051/ro/2016065.
|
[30]
|
Q. Wei, J. Zhang and X. Zhang, An inverse dea model for inputs/outputs estimate, European Journal of Operational Research, 121 (2000), 151-163.
|
[31]
|
J. Wu, Q. An, S. Ali and L. Liang, Dea based resource allocation considering environmental factors, Mathematical and Computer Modelling, 58 (2013), 1128-1137.
|
[32]
|
L. Xiaoya and C. Jinchuan, A comprehensive dea approach for the resource allocation problem based on scale economies classification, Journal of Systems Science and Complexity, 21 (2008), 540-557.
doi: 10.1007/s11424-008-9134-6.
|
[33]
|
H. Yan, Q. Wei and G. Hao, Dea models for resource reallocation and production input/output estimation, European Journal of Operational Research, 136 (2002), 19-31.
doi: 10.1016/S0377-2217(01)00046-7.
|
[34]
|
M. Zahedi-Seresht, G.-R. Jahanshahloo, J. Jablonsky and S. Asghariniya, A new monte carlo based procedure for complete ranking efficient units in dea models, Numerical Algebra, Control & Optimization, 7 (2017), 403-416.
doi: 10.3934/naco.2017025.
|