# American Institute of Mathematical Sciences

March  2008, 3(1): 1-41. doi: 10.3934/nhm.2008.3.1

## Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model

 1 CI2MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile 2 Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 3 Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo, Norway 4 MiraCosta College, 3333 Manchester Avenue, Cardiff-by-the-Sea, CA 92007-1516, United States

Received  August 2007 Revised  October 2007 Published  January 2008

The classical Lighthill-Whitham-Richards (LWR) kinematic traffic model is extended to a unidirectional road on which the maximum density $a(x)$ represents road inhomogeneities, such as variable numbers of lanes, and is allowed to vary discontinuously. The car density $\phi = \phi(x,t)$ is then determined by the following initial value problem for a scalar conservation law with a spatially discontinuous flux:

$\phi_t + (\phi v(\phi/{a(x)})_x = 0, \quad \phi(x,0)=\phi_0(x),\quad x \in \mathbb{R},\quad t\in (0,T),$ (*)

where $v(z)$ is the velocity function. We adapt to (*) a new notion of entropy solutions (Bürger, Karlsen, and Towers [Submitted, 2007]), which involves a Kružkov-type entropy inequality based on a specific flux connection $(A,B)$, and which we interpret in terms of traffic flow. This concept is consistent with both the driver's ride impulse and the desire of drivers to speed up.
We prove that entropy solutions of type $(A,B)$ are unique. This solution concept also leads to simple, transparent, and unified convergence proofs for numerical schemes. Indeed, we adjust to (*) new variants of the Engquist-Osher (EO) scheme (Bürger, Karlsen, and Towers [Submitted, 2007]), and of the Hilliges-Weidlich (HW) scheme analyzed by the authors [ J. Engrg. Math., to appear]. It is proven that the EO and HW schemes and a related Godunov scheme converge to the unique entropy solution of type $(A,B)$ of (*). For the Godunov version, this is the first rigorous convergence and well-posedness result, since no unnecessarily restrictive regularity assumptions are imposed on the solution. Numerical experiments for first-order schemes and formally second-order MUSCL/Runge-Kutta versions are presented.

Citation: Raimund Bürger, Antonio García, Kenneth H. Karlsen, John D. Towers. Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model. Networks & Heterogeneous Media, 2008, 3 (1) : 1-41. doi: 10.3934/nhm.2008.3.1
 [1] Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520 [2] Raimund Bürger, Stefan Diehl, María Carmen Martí. A conservation law with multiply discontinuous flux modelling a flotation column. Networks & Heterogeneous Media, 2018, 13 (2) : 339-371. doi: 10.3934/nhm.2018015 [3] Darko Mitrovic. Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (1) : 163-188. doi: 10.3934/nhm.2010.5.163 [4] Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191 [5] Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159 [6] . Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda. Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks & Heterogeneous Media, 2007, 2 (1) : 127-157. doi: 10.3934/nhm.2007.2.127 [7] Raimund Bürger, Kenneth H. Karlsen, John D. Towers. On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 461-485. doi: 10.3934/nhm.2010.5.461 [8] Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617 [9] Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 [10] Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349 [11] Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159 [12] Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks & Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024 [13] Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052 [14] Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981 [15] Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 419-426. doi: 10.3934/dcdss.2012.5.419 [16] Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129 [17] Steinar Evje, Huanyao Wen. Weak solutions of a gas-liquid drift-flux model with general slip law for wellbore operations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4497-4530. doi: 10.3934/dcds.2013.33.4497 [18] Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Specified homogenization of a discrete traffic model leading to an effective junction condition. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2173-2206. doi: 10.3934/cpaa.2018104 [19] Alberto Bressan, Graziano Guerra. Shift-differentiabilitiy of the flow generated by a conservation law. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 35-58. doi: 10.3934/dcds.1997.3.35 [20] Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099

2018 Impact Factor: 0.871

## Metrics

• HTML views (0)
• Cited by (10)

• on AIMS