
Previous Article
Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model
 NHM Home
 This Issue

Next Article
Leaf superposition property for integer rectifiable currents
Multiphase modeling and qualitative analysis of the growth of tumor cords
1.  Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy 
[1] 
Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 25932605. doi: 10.3934/dcdsb.2018129 
[2] 
Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 737765. doi: 10.3934/dcds.2010.26.737 
[3] 
Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems  B, 2011, 15 (1) : 293308. doi: 10.3934/dcdsb.2011.15.293 
[4] 
Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems  B, 2016, 21 (3) : 9971008. doi: 10.3934/dcdsb.2016.21.997 
[5] 
Shihe Xu, Meng Bai, Fangwei Zhang. Analysis of a free boundary problem for tumor growth with GibbsThomson relation and time delays. Discrete & Continuous Dynamical Systems  B, 2018, 23 (9) : 35353551. doi: 10.3934/dcdsb.2017213 
[6] 
Fujun Zhou, Shangbin Cui. Wellposedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems  A, 2008, 21 (3) : 929943. doi: 10.3934/dcds.2008.21.929 
[7] 
Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete & Continuous Dynamical Systems  B, 2014, 19 (1) : 5572. doi: 10.3934/dcdsb.2014.19.55 
[8] 
T.L. Jackson. A mathematical model of prostate tumor growth and androgenindependent relapse. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 187201. doi: 10.3934/dcdsb.2004.4.187 
[9] 
J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263278. doi: 10.3934/mbe.2013.10.263 
[10] 
Hyun Geun Lee, Yangjin Kim, Junseok Kim. Mathematical model and its fast numerical method for the tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 11731187. doi: 10.3934/mbe.2015.12.1173 
[11] 
Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 193202. doi: 10.3934/dcdsb.2018013 
[12] 
Anatoli Babin, Alexander Figotin. Some mathematical problems in a neoclassical theory of electric charges. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 12831326. doi: 10.3934/dcds.2010.27.1283 
[13] 
Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete & Continuous Dynamical Systems  B, 2016, 21 (5) : 14551468. doi: 10.3934/dcdsb.2016006 
[14] 
Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems  S, 2018, 11 (3) : 465476. doi: 10.3934/dcdss.2018025 
[15] 
Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386397. doi: 10.3934/proc.2001.2001.386 
[16] 
Harald Garcke, Kei Fong Lam. Analysis of a CahnHilliard system with nonzero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete & Continuous Dynamical Systems  A, 2017, 37 (8) : 42774308. doi: 10.3934/dcds.2017183 
[17] 
J. I. Díaz, J. F. Padial. On a freeboundary problem modeling the action of a limiter on a plasma. Conference Publications, 2007, 2007 (Special) : 313322. doi: 10.3934/proc.2007.2007.313 
[18] 
Jinzhi Wang, Yuduo Zhang. Solving the seepage problems with free surface by mathematical programming method. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 351357. doi: 10.3934/naco.2015.5.351 
[19] 
Weiqing Xie. A free boundary problem arising from the process of Czochralski crystal growth. Conference Publications, 2001, 2001 (Special) : 380385. doi: 10.3934/proc.2001.2001.380 
[20] 
Elena IzquierdoKulich, José Manuel NietoVillar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687698. doi: 10.3934/mbe.2007.4.687 
2017 Impact Factor: 1.187
Tools
Metrics
Other articles
by authors
[Back to Top]