2008, 3(1): 43-83. doi: 10.3934/nhm.2008.3.43

Multiphase modeling and qualitative analysis of the growth of tumor cords

1. 

Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Received  May 2007 Revised  January 2008 Published  January 2008

In this paper a macroscopic model of tumor cord growth is developed, relying on the mathematical theory of deformable porous media. Tumor is modeled as a saturated mixture of proliferating cells, extracellular fluid and extracellular matrix, that occupies a spatial region close to a blood vessel whence cells get the nutrient needed for their vital functions. Growth of tumor cells takes place within a healthy host tissue, which is in turn modeled as a saturated mixture of non-proliferating cells. Interactions between these two regions are accounted for as an essential mechanism for the growth of the tumor mass. By weakening the role of the extracellular matrix, which is regarded as a rigid non-remodeling scaffold, a system of two partial differential equations is derived, describing the evolution of the cell volume ratio coupled to the dynamics of the nutrient, whose higher and lower concentration levels determine proliferation or death of tumor cells, respectively. Numerical simulations of a reference two-dimensional problem are shown and commented, and a qualitative mathematical analysis of some of its key issues is proposed.
Citation: Andrea Tosin. Multiphase modeling and qualitative analysis of the growth of tumor cords. Networks & Heterogeneous Media, 2008, 3 (1) : 43-83. doi: 10.3934/nhm.2008.3.43
[1]

Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-13. doi: 10.3934/dcdsb.2018129

[2]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[3]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[4]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[5]

Shihe Xu, Meng Bai, Fangwei Zhang. Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2017213

[6]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[7]

Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55

[8]

T.L. Jackson. A mathematical model of prostate tumor growth and androgen-independent relapse. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 187-201. doi: 10.3934/dcdsb.2004.4.187

[9]

J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263

[10]

Hyun Geun Lee, Yangjin Kim, Junseok Kim. Mathematical model and its fast numerical method for the tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1173-1187. doi: 10.3934/mbe.2015.12.1173

[11]

Avner Friedman. Free boundary problems arising in biology. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013

[12]

Anatoli Babin, Alexander Figotin. Some mathematical problems in a neoclassical theory of electric charges. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1283-1326. doi: 10.3934/dcds.2010.27.1283

[13]

Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006

[14]

Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386

[15]

Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025

[16]

Harald Garcke, Kei Fong Lam. Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4277-4308. doi: 10.3934/dcds.2017183

[17]

Jinzhi Wang, Yuduo Zhang. Solving the seepage problems with free surface by mathematical programming method. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 351-357. doi: 10.3934/naco.2015.5.351

[18]

J. I. Díaz, J. F. Padial. On a free-boundary problem modeling the action of a limiter on a plasma. Conference Publications, 2007, 2007 (Special) : 313-322. doi: 10.3934/proc.2007.2007.313

[19]

Weiqing Xie. A free boundary problem arising from the process of Czochralski crystal growth. Conference Publications, 2001, 2001 (Special) : 380-385. doi: 10.3934/proc.2001.2001.380

[20]

Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687-698. doi: 10.3934/mbe.2007.4.687

2016 Impact Factor: 1.2

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]