• Previous Article
    Theoretical and numerical aspects of the interfacial coupling: The scalar Riemann problem and an application to multiphase flows
  • NHM Home
  • This Issue
  • Next Article
    Remarks on discretizations of convection terms in Hybrid mimetic mixed methods
2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525

A distributed model of traffic flows on extended regions

1. 

DEI, Politecnico di Milano, V. Ponzio 35/5, 20133 Milano, Italy

2. 

MOX, Dipartimento di Matematica "F. Brioschi”, Politecnico di Milano, P. L. da Vinci 32, 20133 Milano, Italy

3. 

IACS/CMCS, Chair of Modeling and Scientific Computing, EPFL, Station 8, CH-1015 Lausanne, Switzerland

Received  January 2010 Revised  April 2010 Published  July 2010

This work deals with the modelling of traffic flows in complex networks, spanning two-dimensional regions whose size ( macroscale ) is much greater than the characteristic size of the network arcs ( microscale). A typical example is the modelling of traffic flow in large urbanized areas with diameter of hundreds of kilometers, where standard models of traffic flows on networks resolving all the streets are computationally too expensive. Starting from a stochastic lattice gas model with simple constitutive laws, we derive a distributed two-dimensional model of traffic flow, in the form of a non-linear diffusion-advection equation for the particle density. The equation is formally equivalent to a (non-linear) Darcy's filtration law. In particular, it contains two parameters that can be seen as the porosity and the permeability tensor of the network. We provide suitable algorithms to extract these parameters starting from the geometry of the network and a given microscale model of traffic flow (for instance based on cellular automata). Finally, we compare the fully microscopic simulation with the finite element solution of our upscaled model in realistic cases, showing that our model is able to capture the large-scale feature of the flow.
Citation: Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni. A distributed model of traffic flows on extended regions. Networks & Heterogeneous Media, 2010, 5 (3) : 525-544. doi: 10.3934/nhm.2010.5.525
[1]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic & Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[2]

T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195

[3]

Pierre Degond, Cécile Appert-Rolland, Julien Pettré, Guy Theraulaz. Vision-based macroscopic pedestrian models. Kinetic & Related Models, 2013, 6 (4) : 809-839. doi: 10.3934/krm.2013.6.809

[4]

Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723

[5]

N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59

[6]

Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation. Networks & Heterogeneous Media, 2012, 7 (4) : 705-740. doi: 10.3934/nhm.2012.7.705

[7]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[8]

Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks & Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773

[9]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks & Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[10]

Mauro Garavello, Benedetto Piccoli. On fluido-dynamic models for urban traffic. Networks & Heterogeneous Media, 2009, 4 (1) : 107-126. doi: 10.3934/nhm.2009.4.107

[11]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[12]

Guillaume Bal, Olivier Pinaud. Self-averaging of kinetic models for waves in random media. Kinetic & Related Models, 2008, 1 (1) : 85-100. doi: 10.3934/krm.2008.1.85

[13]

Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423

[14]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[15]

Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327

[16]

Qingming Gou, Wendi Wang. Global stability of two epidemic models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 333-345. doi: 10.3934/dcdsb.2007.8.333

[17]

Thierry Goudon, Martin Parisot. Non--local macroscopic models based on Gaussian closures for the Spizer-Härm regime. Kinetic & Related Models, 2011, 4 (3) : 735-766. doi: 10.3934/krm.2011.4.735

[18]

José A. Carrillo, Raluca Eftimie, Franca Hoffmann. Non-local kinetic and macroscopic models for self-organised animal aggregations. Kinetic & Related Models, 2015, 8 (3) : 413-441. doi: 10.3934/krm.2015.8.413

[19]

Michael Herty, Christian Ringhofer. Averaged kinetic models for flows on unstructured networks. Kinetic & Related Models, 2011, 4 (4) : 1081-1096. doi: 10.3934/krm.2011.4.1081

[20]

Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks & Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (8)

[Back to Top]