\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift

Abstract / Introduction Related Papers Cited by
  • This contribution is concerned with the formulation of a heterogeneous multiscale finite elements method (HMM) for solving linear advection-diffusion problems with rapidly oscillating coefficient functions and a large expected drift. We show that, in the case of periodic coefficient functions, this approach is equivalent to a discretization of the two-scale homogenized equation by means of a Discontinuous Galerkin Time Stepping Method with quadrature. We then derive an optimal order a-priori error estimate for this version of the HMM and finally provide numerical experiments to validate the method.
    Mathematics Subject Classification: Primary: 35K15, 35B45, 65N30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Abdulle, Multiscale methods for advection-diffusion problems, Discrete Contin. Dyn. Syst., suppl (2005), 11-21.

    [2]

    A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Multiscale Model. Simul., 4 (2005), 447-459 (electronic).doi: 10.1137/040607137.

    [3]

    A. Abdulle and W. E, Finite difference heterogeneous multi-scale method for homogenization problems, J. Comput. Phys., 191 (2003), 18-39.doi: 10.1016/S0021-9991(03)00303-6.

    [4]

    A. Abdulle and C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces, Multiscale Model. Simul., 3 (2004/05), 195-220 (electronic).doi: 10.1137/030600771.

    [5]

    G. Allaire and R. Orive, Homogenization of periodic non self-adjoint problems with large drift and potential, ESAIM Control Optim. Calc. Var., 13 (2007), 735-749 (electronic).doi: 10.1051/cocv:2007030.

    [6]

    G. Allaire and A.-L. Raphael, "Homogénéisation d'un Modèle de Convection-Diffusion Avec Chimie/Adsorption en Milieu Poreux," (French), Rapport Interne, CMAP, Ecole Polytechnique, n. 604, 2006.

    [7]

    G. Allaire and A.-L. Raphael, Homogenization of a convection-diffusion model with reaction in a porous medium, C. R. Math. Acad. Sci. Paris, 344 (2007), 523-528.

    [8]

    T. Arbogast, G. Pencheva, M. F. Wheeler and I. Yotov, A multiscale mortar mixed finite element method, Multiscale Model. Simul., 6 (2007), 319-346 (electronic).doi: 10.1137/060662587.

    [9]

    A. Bourlioux and A. J. Majda, An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion, Combust. Theory Model., 4 (2000), 189-210.doi: 10.1088/1364-7830/4/2/307.

    [10]

    W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), 87-132.

    [11]

    W. E and B. Engquist, Multiscale modeling and computation, Notices Amer. Math. Soc., 50 (2003), 1062-1070.

    [12]

    W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems, in "Multiscale Methods in Science And Engineering," Lect. Notes Comput. Sci. Eng., 44, Springer, Berlin, (2005), 89-110.

    [13]

    W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18 (2005), 121-156 (electronic).doi: 10.1090/S0894-0347-04-00469-2.

    [14]

    Y. Efendiev and T. Hou, Multiscale finite element methods for porous media flows and their applications, Appl. Numer. Math., 57 (2007), 577-596.doi: 10.1016/j.apnum.2006.07.009.

    [15]

    V. Gravemeier and W. A. Wall, A 'divide-and-conquer' spatial and temporal multiscale method for transient convection-diffusion-reaction equations, Internat. J. Numer. Methods Fluids, 54 (2007), 779-804.doi: 10.1002/fld.1465.

    [16]

    P. Henning and M. Ohlberger, A-posteriori error estimate for a heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift, Preprint, Universität Münster, N-09/09, 2009.

    [17]

    P. Henning and M. Ohlberger, A note on homogenization of advection-diffusion problems with large expected drift, submitted to: ZAA, Journal for Analysis and its Applications, 2010.

    [18]

    P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains, Numer. Math., 113 (2009), 601-629.doi: 10.1007/s00211-009-0244-4.

    [19]

    V. Hoang and C. SchwabHigh-dimensional finite elements for elliptic problems with multiple scales, Multiscale Model. Simul., 3 (2004/05), 168-194 (electronic). doi: 10.1137/030601077.

    [20]

    T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134 (1997), 169-189.doi: 10.1006/jcph.1997.5682.

    [21]

    T. Y. Hou, X.-H. Wu and C. Zhiqiang, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68 (1999), 913-943.doi: 10.1090/S0025-5718-99-01077-7.

    [22]

    L. Jiang, Y. Efendiev and V. Ginting, Multiscale methods for parabolic equations with continuum spatial scales, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 833-859 (electronic).doi: 10.3934/dcdsb.2007.8.833.

    [23]

    E. Marušić-Paloka and A. L. Piatnitski, Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection, J. London Math. Soc. (2), 72 (2005), 391-409 (electronic).doi: 10.1112/S0024610705006824.

    [24]

    A.-M. Matache, Sparse two-scale FEM for homogenization problems. Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), J. Sci. Comput., 17 (2002), 659-669.doi: 10.1023/A:1015187000835.

    [25]

    A.-M. Matache and C. Schwab, Two-scale FEM for homogenization problems, M2AN Math. Model. Numer. Anal., 36 (2002), 537-572.doi: 10.1051/m2an:2002025.

    [26]

    P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems, Math. Comp., 76 (2007), 153-177 (electronic).doi: 10.1090/S0025-5718-06-01909-0.

    [27]

    J. Nolen, G. Papanicolaou and O. Pironneau, A framework for adaptive multiscale methods for elliptic problems, Multiscale Model. Simul., 7 (2008), 171-196.doi: 10.1137/070693230.

    [28]

    J. T. Oden and K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms, J. Comput. Phys., 164 (2000), 22-47.doi: 10.1006/jcph.2000.6585.

    [29]

    M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, Multiscale Model. Simul., 4 (2005), 88-114 (electronic).doi: 10.1137/040605229.

    [30]

    C. Schwab and A.-M. Matache, Generalized FEM for homogenization problems, in "Multiscale and Multiresolution Methods," Lect. Notes Comput. Sci. Eng., 20, Springer, Berlin, (2002), 197-237.

    [31]

    V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems," Springer Series in Computational Mathematics, 25, Springer-Verlag, Berlin, 1997.

    [32]

    K. S. Vemaganti and J. T. Oden, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids, Comput. Methods Appl. Mech. Engrg., 190 (2001), 46-47.doi: 10.1016/S0045-7825(01)00217-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(151) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return