June  2011, 6(2): 167-194. doi: 10.3934/nhm.2011.6.167

A central limit theorem for pulled fronts in a random medium

1. 

Department of Mathematics, Duke University, Box 90320, Durham, NC, 27708-0320, United States

Received  August 2010 Revised  February 2011 Published  May 2011

We consider solutions to a nonlinear reaction diffusion equation when the reaction term varies randomly with respect to the spatial coordinate. The nonlinearity is the KPP type nonlinearity. For a stationary and ergodic medium, and for certain initial condition, the solution develops a moving front that has a deterministic asymptotic speed in the large time limit. The main result of this article is a central limit theorem for the position of the front, in the supercritical regime, if the medium satisfies a mixing condition.
Citation: James Nolen. A central limit theorem for pulled fronts in a random medium. Networks & Heterogeneous Media, 2011, 6 (2) : 167-194. doi: 10.3934/nhm.2011.6.167
References:
[1]

M. Bages, P. Martinez and J.-M. Roquejoffre, How traveling waves attract the solutions of KPP-type equations,, preprint 2010., (2010).   Google Scholar

[2]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media,, Comm. Pure Appl. Math., 55 (2002), 949.  doi: 10.1002/cpa.3022.  Google Scholar

[3]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations,, In:, 446 (2007), 101.   Google Scholar

[4]

P. Billingsley, "Convergence of Probability Measures,", John Wiley and Sons, (1968).   Google Scholar

[5]

E. Brunet, B. Derrida, A. H. Mueller and S. Munier, Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.056126.  Google Scholar

[6]

S. Chatterjee, A new method of normal approximation,, Ann. Probab., 36 (2008), 1584.  doi: 10.1214/07-AOP370.  Google Scholar

[7]

R. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[8]

M. Freidlin, "Functional Integration and Partial Differential Equations,", Ann. Math. Stud. 109, (1985).   Google Scholar

[9]

J. Gärtner and M. I. Freidlin, The propagation of concentration waves in periodic and random media,, Dokl. Acad. Nauk SSSR, 249 (1979), 521.   Google Scholar

[10]

P. Hall and C. C. Heyde, "Martingale Limit Theory and its Application,", Academic Press, (1980).   Google Scholar

[11]

F. Hamel and L. Roques, Uniqueness and stability properties of monostable pulsating fronts,, J. European Math. Soc., 13 (2011), 345.  doi: 10.4171/JEMS/256.  Google Scholar

[12]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Étude de l'équation de la chaleurde matiére et son application à un problème biologique,, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937), 1.   Google Scholar

[13]

P.-L. Lions and P. E. Souganidis, Homogenization of viscous Hamilton-Jacobi equations in stationary ergodic media,, Comm. Partial Diff. Eqn., 30 (2005), 335.  doi: 10.1081/PDE-200050077.  Google Scholar

[14]

A. Majda and P. E. Souganidis, Flame fronts in a turbulent combustion model with fractal velocity fields,, Comm. Pure Appl. Math., 51 (1998), 1337.  doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1337::AID-CPA4>3.0.CO;2-B.  Google Scholar

[15]

P. Martinez and J.-M. Roquejoffre, Convergence to critical waves in KPP-type equations,, Preprint 2010., (2010).   Google Scholar

[16]

A. Mellet, J. Nolen, J.-M. Roquejoffre and L. Ryzhik, Stability of generalized transition fronts,, Communications in PDE, 34 (2009), 521.  doi: 10.1080/03605300902768677.  Google Scholar

[17]

C. Mueller and R. Sowers, Random travelling waves for the KPP equation with noise,, J. Funct. Anal., 128 (1995), 439.  doi: 10.1006/jfan.1995.1038.  Google Scholar

[18]

J. Nolen, An invariance principle for random traveling waves in one dimension,, SIAM J. Math. Anal., 43 (2011), 153.  doi: 10.1137/090746513.  Google Scholar

[19]

J. Nolen and L. Ryzhik, Traveling waves in a one-dimensional heterogeneous medium,, AIHP - Analyse Non Linéaire, 26 (2009), 1021.   Google Scholar

[20]

J. Nolen and J. Xin, Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows,, AIHP - Analyse Non Linéaire, 26 (2008), 815.   Google Scholar

[21]

J. Nolen and J. Xin, KPP fronts in 1D random drift,, Discrete and Continuous Dynamical Systems B, 11 (2009), 421.  doi: 10.3934/dcdsb.2009.11.421.  Google Scholar

[22]

A. Rocco, U. Ebert and W. van Saarloos, Subdiffusive fluctuations of "pulled" fronts with multiplicative noise,, Phys. Rev. E, 62 (2000).  doi: 10.1103/PhysRevE.62.R13.  Google Scholar

[23]

W. Shen, Traveling waves in diffusive random media,, J. Dynamics and Diff. Eqns., 16 (2004), 1011.  doi: 10.1007/s10884-004-7832-x.  Google Scholar

[24]

R. Tribe, A travelling wave solution to the Kolmogorov equation with noise,, Stochastics Stochastics Rep., 56 (1996), 317.   Google Scholar

[25]

W. van Saarloos, Front propagation into unstable states,, Physics Reports, 386 (2003), 29.  doi: 10.1016/j.physrep.2003.08.001.  Google Scholar

[26]

J. Xin, "An Introduction to Fronts in Random Media,", Springer, (2009).  doi: 10.1007/978-0-387-87683-2.  Google Scholar

show all references

References:
[1]

M. Bages, P. Martinez and J.-M. Roquejoffre, How traveling waves attract the solutions of KPP-type equations,, preprint 2010., (2010).   Google Scholar

[2]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media,, Comm. Pure Appl. Math., 55 (2002), 949.  doi: 10.1002/cpa.3022.  Google Scholar

[3]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations,, In:, 446 (2007), 101.   Google Scholar

[4]

P. Billingsley, "Convergence of Probability Measures,", John Wiley and Sons, (1968).   Google Scholar

[5]

E. Brunet, B. Derrida, A. H. Mueller and S. Munier, Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.056126.  Google Scholar

[6]

S. Chatterjee, A new method of normal approximation,, Ann. Probab., 36 (2008), 1584.  doi: 10.1214/07-AOP370.  Google Scholar

[7]

R. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[8]

M. Freidlin, "Functional Integration and Partial Differential Equations,", Ann. Math. Stud. 109, (1985).   Google Scholar

[9]

J. Gärtner and M. I. Freidlin, The propagation of concentration waves in periodic and random media,, Dokl. Acad. Nauk SSSR, 249 (1979), 521.   Google Scholar

[10]

P. Hall and C. C. Heyde, "Martingale Limit Theory and its Application,", Academic Press, (1980).   Google Scholar

[11]

F. Hamel and L. Roques, Uniqueness and stability properties of monostable pulsating fronts,, J. European Math. Soc., 13 (2011), 345.  doi: 10.4171/JEMS/256.  Google Scholar

[12]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Étude de l'équation de la chaleurde matiére et son application à un problème biologique,, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937), 1.   Google Scholar

[13]

P.-L. Lions and P. E. Souganidis, Homogenization of viscous Hamilton-Jacobi equations in stationary ergodic media,, Comm. Partial Diff. Eqn., 30 (2005), 335.  doi: 10.1081/PDE-200050077.  Google Scholar

[14]

A. Majda and P. E. Souganidis, Flame fronts in a turbulent combustion model with fractal velocity fields,, Comm. Pure Appl. Math., 51 (1998), 1337.  doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1337::AID-CPA4>3.0.CO;2-B.  Google Scholar

[15]

P. Martinez and J.-M. Roquejoffre, Convergence to critical waves in KPP-type equations,, Preprint 2010., (2010).   Google Scholar

[16]

A. Mellet, J. Nolen, J.-M. Roquejoffre and L. Ryzhik, Stability of generalized transition fronts,, Communications in PDE, 34 (2009), 521.  doi: 10.1080/03605300902768677.  Google Scholar

[17]

C. Mueller and R. Sowers, Random travelling waves for the KPP equation with noise,, J. Funct. Anal., 128 (1995), 439.  doi: 10.1006/jfan.1995.1038.  Google Scholar

[18]

J. Nolen, An invariance principle for random traveling waves in one dimension,, SIAM J. Math. Anal., 43 (2011), 153.  doi: 10.1137/090746513.  Google Scholar

[19]

J. Nolen and L. Ryzhik, Traveling waves in a one-dimensional heterogeneous medium,, AIHP - Analyse Non Linéaire, 26 (2009), 1021.   Google Scholar

[20]

J. Nolen and J. Xin, Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows,, AIHP - Analyse Non Linéaire, 26 (2008), 815.   Google Scholar

[21]

J. Nolen and J. Xin, KPP fronts in 1D random drift,, Discrete and Continuous Dynamical Systems B, 11 (2009), 421.  doi: 10.3934/dcdsb.2009.11.421.  Google Scholar

[22]

A. Rocco, U. Ebert and W. van Saarloos, Subdiffusive fluctuations of "pulled" fronts with multiplicative noise,, Phys. Rev. E, 62 (2000).  doi: 10.1103/PhysRevE.62.R13.  Google Scholar

[23]

W. Shen, Traveling waves in diffusive random media,, J. Dynamics and Diff. Eqns., 16 (2004), 1011.  doi: 10.1007/s10884-004-7832-x.  Google Scholar

[24]

R. Tribe, A travelling wave solution to the Kolmogorov equation with noise,, Stochastics Stochastics Rep., 56 (1996), 317.   Google Scholar

[25]

W. van Saarloos, Front propagation into unstable states,, Physics Reports, 386 (2003), 29.  doi: 10.1016/j.physrep.2003.08.001.  Google Scholar

[26]

J. Xin, "An Introduction to Fronts in Random Media,", Springer, (2009).  doi: 10.1007/978-0-387-87683-2.  Google Scholar

[1]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[2]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[3]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[4]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[5]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[6]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[7]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[8]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[9]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[10]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[11]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[12]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[13]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[14]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[15]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[16]

Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

[17]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[18]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[19]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[20]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]