June  2012, 7(2): 263-277. doi: 10.3934/nhm.2012.7.263

A semi-discrete approximation for a first order mean field game problem

1. 

"Sapienza", Università di Roma, Dipartimento di Scienze di Base e Applicate per l'Ingegneria, 00161 Roma

2. 

"Sapienza", Università di Roma, Dipartimento di Matematica Guido Castelnuovo, 00185 Rome, Italy

Received  November 2011 Revised  March 2012 Published  June 2012

In this article we consider a model first order mean field game problem, introduced by J.M. Lasry and P.L. Lions in [18]. Its solution $(v,m)$ can be obtained as the limit of the solutions of the second order mean field game problems, when the noise parameter tends to zero (see [18]). We propose a semi-discrete in time approximation of the system and, under natural assumptions, we prove that it is well posed and that it converges to $(v,m)$ when the discretization parameter tends to zero.
Citation: Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks & Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263
References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. of Control & Optimization, 50 (2012), 77.  doi: 10.1137/100790069.  Google Scholar

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136.  doi: 10.1137/090758477.  Google Scholar

[3]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis,", Systems & Control: Foundations & Applications, 2 (1990).   Google Scholar

[4]

M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", With appendices by Maurizio Falcone and Pierpaolo Soravia, (1997).   Google Scholar

[5]

J. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems,", Springer Series in Operations Research, (2000).   Google Scholar

[6]

P. Cannarsa and C. Sinestrari, "Semiconcave functions, Hamilton-Jacobi equations, and Optimal Control,", Progress in Nonlinear Differential Equations and their Applications, 58 (2004).   Google Scholar

[7]

Pierre Cardaliaguet, "Notes on Mean Field Games: From P.-L. Lions' Lectures at Collège de France,", Lecture Notes given at Tor Vergata, (2010).   Google Scholar

[8]

I. Capuzzo-Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming,, Appl. Math. Optim., 10 (1983), 367.  doi: 10.1007/BF01448394.  Google Scholar

[9]

I. Capuzzo-Dolcetta and M. Falcone, Discrete dynamic programming and viscosity solutions of the Bellman equation,, Analyse Non Linéaire (Perpignan, 6 (1989), 161.   Google Scholar

[10]

I. Capuzzo-Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory,, Appl. Math. Optim., 11 (1984), 161.  doi: 10.1007/BF01442176.  Google Scholar

[11]

M. Falcone and R. Ferretti, "Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,", MOS-SIAM Series on Optimization, ().   Google Scholar

[12]

D. A. Gomes, Viscosity solution methods and the discrete Aubry-Mather problem,, Discrete Contin. Dyn. Syst., 13 (2005), 103.  doi: 10.3934/dcds.2005.13.103.  Google Scholar

[13]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.   Google Scholar

[14]

O. Guéant, Mean field games equations with quadratic hamiltonian: a specific approach,, \arXiv{1106.3269v1}, (2011).   Google Scholar

[15]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Math. Models Methods Appl. Sci., 20 (2010), 567.  doi: 10.1142/S0218202510004349.  Google Scholar

[16]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[17]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[18]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.   Google Scholar

[19]

P.-L. Lions, Cours du Collège de France., Available from: \url{http://www.college-de-france.fr}., ().   Google Scholar

show all references

References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. of Control & Optimization, 50 (2012), 77.  doi: 10.1137/100790069.  Google Scholar

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM J. Numer. Anal., 48 (2010), 1136.  doi: 10.1137/090758477.  Google Scholar

[3]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis,", Systems & Control: Foundations & Applications, 2 (1990).   Google Scholar

[4]

M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,", With appendices by Maurizio Falcone and Pierpaolo Soravia, (1997).   Google Scholar

[5]

J. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems,", Springer Series in Operations Research, (2000).   Google Scholar

[6]

P. Cannarsa and C. Sinestrari, "Semiconcave functions, Hamilton-Jacobi equations, and Optimal Control,", Progress in Nonlinear Differential Equations and their Applications, 58 (2004).   Google Scholar

[7]

Pierre Cardaliaguet, "Notes on Mean Field Games: From P.-L. Lions' Lectures at Collège de France,", Lecture Notes given at Tor Vergata, (2010).   Google Scholar

[8]

I. Capuzzo-Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming,, Appl. Math. Optim., 10 (1983), 367.  doi: 10.1007/BF01448394.  Google Scholar

[9]

I. Capuzzo-Dolcetta and M. Falcone, Discrete dynamic programming and viscosity solutions of the Bellman equation,, Analyse Non Linéaire (Perpignan, 6 (1989), 161.   Google Scholar

[10]

I. Capuzzo-Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory,, Appl. Math. Optim., 11 (1984), 161.  doi: 10.1007/BF01442176.  Google Scholar

[11]

M. Falcone and R. Ferretti, "Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,", MOS-SIAM Series on Optimization, ().   Google Scholar

[12]

D. A. Gomes, Viscosity solution methods and the discrete Aubry-Mather problem,, Discrete Contin. Dyn. Syst., 13 (2005), 103.  doi: 10.3934/dcds.2005.13.103.  Google Scholar

[13]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, J. Math. Pures Appl. (9), 93 (2010), 308.   Google Scholar

[14]

O. Guéant, Mean field games equations with quadratic hamiltonian: a specific approach,, \arXiv{1106.3269v1}, (2011).   Google Scholar

[15]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Math. Models Methods Appl. Sci., 20 (2010), 567.  doi: 10.1142/S0218202510004349.  Google Scholar

[16]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Math. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[17]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Math. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[18]

J.-M. Lasry and P.-L. Lions, Mean field games,, Jpn. J. Math., 2 (2007), 229.   Google Scholar

[19]

P.-L. Lions, Cours du Collège de France., Available from: \url{http://www.college-de-france.fr}., ().   Google Scholar

[1]

Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks & Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315

[2]

Salah Eddine Choutri, Boualem Djehiche, Hamidou Tembine. Optimal control and zero-sum games for Markov chains of mean-field type. Mathematical Control & Related Fields, 2019, 9 (3) : 571-605. doi: 10.3934/mcrf.2019026

[3]

Kuang Huang, Xuan Di, Qiang Du, Xi Chen. A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020131

[4]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020051

[5]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[6]

Martin Benning, Elena Celledoni, Matthias J. Ehrhardt, Brynjulf Owren, Carola-Bibiane Schönlieb. Deep learning as optimal control problems: Models and numerical methods. Journal of Computational Dynamics, 2019, 6 (2) : 171-198. doi: 10.3934/jcd.2019009

[7]

Xiaowei Pang, Haiming Song, Xiaoshen Wang, Jiachuan Zhang. Efficient numerical methods for elliptic optimal control problems with random coefficient. Electronic Research Archive, 2020, 28 (2) : 1001-1022. doi: 10.3934/era.2020053

[8]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[9]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics & Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016

[10]

Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A class of infinite horizon mean field games on networks. Networks & Heterogeneous Media, 2019, 14 (3) : 537-566. doi: 10.3934/nhm.2019021

[11]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A model problem for Mean Field Games on networks. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4173-4192. doi: 10.3934/dcds.2015.35.4173

[12]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[13]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[14]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020026

[15]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[16]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[17]

Yves Achdou, Victor Perez. Iterative strategies for solving linearized discrete mean field games systems. Networks & Heterogeneous Media, 2012, 7 (2) : 197-217. doi: 10.3934/nhm.2012.7.197

[18]

Matt Barker. From mean field games to the best reply strategy in a stochastic framework. Journal of Dynamics & Games, 2019, 6 (4) : 291-314. doi: 10.3934/jdg.2019020

[19]

Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89

[20]

Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations. Networks & Heterogeneous Media, 2015, 10 (3) : 699-715. doi: 10.3934/nhm.2015.10.699

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]